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Abstract:- 
Many data analysis methods are sensitive to the type of data under study.  When we begin any statistical data analysis, it 

is very important to recognize the different types of data. Data can take a variety of values or belong to various categories, 

whichever numerical or nominal. However, there are two types of data, quantitative and qualitative (Categorical) data. 

The general and powerful methodological approaches for the analysis of quantitative data have been widely taught for 

several decades. While the analysis for qualitative data analysis have blossomed only in the past 25 years. The need for 

analysis of categorical data techniques has increased steadily in recent years, in economic, health, social science. 

However, analysis of categorical data models when the dependent variable binary or multinomial outcomes with mixed 

explanatory variables are complex. The main goal of this paper is to estimate a nonparametric regression model of the 

binary and multinomial outcomes models with mixed explanatory variables, it is based on nonparametric conditional 

CDF method and (PDF) method of bandwidth selection, presented by   Li and Racine (2008). Then we have compared it 

with one of the most common method of parametric regression (the logistic regression model). The comparisons will be 

based on two criteria depends on their classification ability through Correct Classification Ratio CCR as well as their 

log likelihood value LLK. We conducted several simulation studies using generated random data (categorical discrete 

and continues) in order to investigate the performance of both the parametric model and the nonparametric model for 

binary and multinomial outcomes. Interesting results have been achieved in this work. Application on real-data have also 

been applied when there exist mixed variables. We make use of dataset of the Household Expenditure Survey (HES).  
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INTRODUCTION  

1. Logistic Regression Model  

The logistic regression models can be classified upon the scale of the dependent variable. If the dependent variable has 

only two levels (categories), then the Binary Logistic Regression Model is used. If the dependent variable has more than 

two levels (categories), then the Multinomial Logistic Regression is used.  

1.1 Binary Logistic Regression Model  

The important difference between the linear and logistic regression models concerns the conditional distribution of the 

outcome variable [3]. Recently, the binary logistic regression model has become a popular tool in most business 

applications [2].  

Many categorical dependent variable y have only two categories, we denote the two possible outcomes, Success "1" and 

Failure "0". The distribution of y is specified by probabilities for one outcome.   

The S shaped curves in Figure 1 are typical.  

 
Figure 1: The graphical representation of a typical linear regression model and a typical binary 

logistic regression model. 

 

The most important mathematical function with this shape has formula    

 
This is called the logistic regression function, so the binary logistic regression model is 

 
It is a special case of Generalized Linear Model (GLM), random component for (success, failure). The outcome has a 

binomial distribution, where  is called odds ratio and the logit function 

 
Where πis restricted to (0 –1) range, and the logit can be any real number with the possible range for linear predictors 

such as  If  the  parameters β>  0  then  increases  as x increases.  If β< 0, then  decreases as x increases. 

Thus, β determines the rate of increase or decrease of the curve, and if β=0, then the curve flattens to a horizontal straight 

line. The  logistic  regression  model  can  be  extend  to  other  models  with  multiple  explanatory  variables, where the 

formula for π (x), becomes 

 

 Model for log odds is 

 
Where  the  parameters  of  logistic  regression  models  are  estimated  by  the  Maximum  Likelihood Estimation (MLE) 

method.         

Where the likelihood equation 
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To  find  the  critical  points  of  the  log  likelihood  function,  we  first  set  the  derivative  with  respect  to each  equal 

to zero. It yields a (p+1) terms of the non-linear equations that cannot be solved only through an iterative algorithm 

(1990) had presented the 

maximum likelihood estimator  is the value of  that maximizes equation (6) 

 

Lastly, the Binary logistic regression model does not assume (as the linear regression model) normality, linearity, and 

homoscedasticity.  

 

1.2 Multinomial Logistic Regression  

The Multinomial logistic regression (MLR) model is a simple extension of the binary logistic regression that allows for 

more than two categories of the dependent variable.  

If we have n independent observations with p explanatory variables, and the qualitative dependent variable has J 

categories. Then, to construct the logits in the multinomial case, one of the categories must be considered the base level 

and all the logits are built relative to it. Any category can be taken as the base level, so we will take category J as the base 

level. Then there is no ordering, it is apparent that any category may be considered J. Let j denote the multinomial 

probability of an observation falling in the ith category. Thus, to find the relationship between this probability and the p 

explanatory variables X1, X2,...,Xp the multiple logistic regression model then be  

 

 

 

 
 

The multinomial logistic regression (MLR) model uses the maximum likelihood estimation (MLE) method to evaluate 

the probability of categorical membership in the same manner as the binary logistic regression model.   

It is important to note that, as in the binary logistic regression model, the MLR model does not assume (as in linear 

regression models) normality, linearity, and homoscedasticity.  

 

2. Nonparametric Estimation of Conditional CDF with Both Categorical and Continuous data  
The Nonparametric Regression methods are simply alternative statistical approaches used when some assumptions valid 

for parametric Regression methods are not provided. They are effective methods for data, which have low sample size or 

inconsistent sample.    

 

It is more suitable to use nonparametric estimators when there is no parametric form for the regression function, because 

when the parametric model is valid, nonparametric models will be less efficient. Furthermore, nonparametric models can 

be used to test the validity of parametric models [4].  

 

The estimation of a regression function (i.e., a conditional mean) is often the most common econometric application of 

nonparametric techniques. However, it is of interest usually to model conditional quantiles (e.g., the median), particularly 

when it is felt that the conditional mean is not representative of the impact of the explanatory variables on the dependent 

variable. Furthermore, the quantile regression function in general provides a much more comprehensive picture of the 

conditional distribution of a dependent variable than the conditional mean function [6].  

 

The conditional quantile function can be easily modeled by inverting the conditional Cumulative Distribution Function 

(CDF) at the desired quantile. Of course, the conditional CDF is unknown and must be estimated. The nonparametric 

estimation of conditional CDFs has received recently much attention.   

 

The crucial issue in the nonparametric estimation is the selection of smoothing parameters (bandwidths). Unfortunately, 

there is no an automatic data-driven method for selecting the optimal smoothing parameters when estimating a conditional 

CDF.   

 

However, Li and Racine (2008) had presented methodology for conditional CDF estimator and they adopted the 

conditional Probability Density Function (PDF) method of bandwidth selection proposed by Hall et al. (2004) in the 

context of estimating a conditional CDF.  

 

2.1 The Conditional Cumulative Density Function Estimator   

We use F (y|z) to denote the conditional CDF of Y given Z = z,  
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Let,, (z = zc, zd) where zc ∈ Rq  is a q-dimensional continuous random vector, and where zd is an r-dimensional  

discrete  random  vector. Also, we define that 

 

 and hs played the role of 

bandwidths. 

 

 Smoothing the Dependent Variable 

When the dependent variable Y is a continuous random variable, one can use an alternative estimator that also 

smoothing the dependent variable y. Thus, we can estimate  

 

 is the distribution function derived from the density function w(·), and h0 is the bandwidth 

associated with Yi 

 

2.2 Selection of Smoothing Parameters  

Li and Racine (2008) have affirmed that there does not exist an automatic data-driven method for optimally selecting 

bandwidths when estimating a conditional CDF in the sense that a weighted mean integrated square error (MISE) is 

minimized. However, there do exist well developed automatic datadriven methods for selecting bandwidths when 

estimating the closely related conditional PDF. In particular, Hall et al. (2004) have considered the estimation of 

conditional probability density functions when the conditioning variables are a mix of categorical and continuous data 

types. Let f(y|z) denote the conditional probability density function of Y given Z = z, and let g(y,z) denote the joint  

 

 

is a kernel estimator of g(y,z), and where  

  

 

 

 

 Leave-one-out estimators of 

 

 
For comprehensive details of this theoretical development are in [6]. 

 

The Simulation Study  
To compare the performance of the two methods of regression modelling when the dependent variable is (binary or 

multinomial outcomes) with mixed explanatory variables namely, the parametric method and the nonparametric method.   

  

3.1 Description of the Experiment.  
In this study, the goal is to compare the performance of the two different regression models namely, the parametric and 

the nonparametric. First, a random data has been generated. However, such a study is necessarily to be restrictive, because 

there are many possibilities for the number of explanatory variables P, and sample size (n). In the first set of experiments, 

the binary outcomes are utilized with the existence of different kinds of explanatory variables. However, in the second 

set of experiments the multinomial outcomes are utilized with the existence of different kinds of explanatory variables. 

Four choices of the number of explanatory variables (p=2, p=3, p=4, and p=5) are considered.   

We have also chosen three different sample sizes (n=50, n=100 and n=300).   

24 simulation studies were conducted, 12 of them were conducted on the binary   
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Outcome context and other 12 were conducted on multinomial outcome context. Each simulation study involves L=500 

repetitions.  

 

3.1.1 The Numerical Summary for the Binary Outcome  

 

 
Table (1): The numerical summary of results obtained using two different methods (parametric, nonparametric) 

from the 1st set of Simulation studies for binary outcome. That includes (Means, Standard Deviations) for both 

criteria CCR and LLK respectively of 500 simulation runs. 

 

From Table (1), we have noticed the following remarks. First, the mean values for CCR in nonparametric method always 

higher than their corresponding counterparts mean values for CCR in Parametric method for all possible choices of 

sample size.  Secondly, the values of standard  deviations for CCR in nonparametric method always higher than their 

corresponding counterparts standard deviation values for CCR in parametric method, the main reason behind that the 

CCR1 values have much less variation than the CCR2 values, which in some cases the CCR2 values can reach 100% 

classification ratio. Thirdly, the mean values in both CCR1 and CCR2  are increasing as the number of explanatory 

variables increases particularly at small sample size where we noticed that CCR2 reach to 91% at n=50. Fourthly, the 

mean values in both CCR1 and CCR2 are decreasing as the sample size n increases. Fifthly, the results obtained for the 

mean values of CCR are exactly applied the mean values of LLK. Lastly, the numerical results obtained using the 

Nonparametric CDF Model are superior comparing with their corresponding counterparts using the parametric Logit 

Model.   
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3.1.2 The Numerical Summary for Multinomial Outcomes  

 
Table (2): The numerical summary of results obtained using two different methods (parametric, nonparametric) 

from the 2nd set of Simulation studies for multinomial outcome. That includes (Means, Standard Deviations) for 

both criteria CCR and LLK respectively of 500 simulation runs. 

 

From Table (2), we have noticed the following points. Firstly, in this simulation study the mean values for CCR in 

nonparametric method always higher than their corresponding counterpart mean values for CCR in parametric method 

for all possible choices of sample size. However, we have noted that the CCR mean values were smaller in both estimated 

models with their corresponding counterparts in case of the binary outcome.  Secondly, the values of standard  deviations 

for CCR in nonparametric method always higher than their corresponding counterparts standard deviation values for 

CCR in parametric method. The main reason behind that the CCR1 mean values have much less variation than the CCR2 

mean values, which in some cases the CCR2 values can reach up to 100% classification ratio. Thirdly, the mean values 

in both CCR1 and CCR2 are increasing as the number of explanatory variables increases particularly at small sample 

size where we noticed that CCR2 reach to 77% at n=50. Fourthly, the mean values in both CCR1 and CCR2 are 

decreasing as the sample size n increases. Fifthly, the remarks noted about the mean values of CCR are exactly applied 

the mean values of LLK. Lastly, the numerical results obtained using the Nonparametric CDF Model are superior 

comparing with their corresponding counterparts using the parametric Logit Model.  

 

4.  Applications on Real Data Sets  

The HES data in years 2009/2010 used to compile information on the level and patterns of consumption expenditure of 

private households, where the survey covered the following topics:  

 Geographic Coverage: The survey was covered both urban and rural areas (Strata) in Malaysia. Those Strata consists 

of 16 states all over Malaysia.  

 The survey covered the Type of Living Quarters which we classified into three different categories    

 The Status of Living Quarters also are included which also classified into three different categories.  

 The Number of household members is also considered.   

 The Household expenditure, which contained the consumption and the non-consumption expenditure Coverage.  

 

The Household Expenditure Survey 2009/10, was carried out for a period of 12 months, started from April 2009 to March 

2010.  
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However, we have considered six variables.  

Then, we begin by estimating the model and compute the classification matrices by applying the two different methods 

(parametric, nonparametric) for the four different random samples size (n1=264, n2=306, n3=964, and n4=1622) that have been 

drawn from survey data. It is worth noting that in the parametric method, we use the Logit model and then we compute 

the classification matrix, which in turn use to compute the Correct Classification Ratio (CCR). However, in the 

nonparametric method we use the conditional density estimator and then compute the conditional mode, which in turn 

use to compute the CCR. Finally, we will be able to compare their Correct Classification Ratio (CCR) via their 

classification matrices. The second criterion of comparisons is based on calculating the Log Likelihood value (LLK) of 

both the Logit model and the conditional density function.    

 

4.1 The case of Binary outcome   

 The variable “Strata” as the dependent variable in the binary outcome case have two categories (Urban, Rural).  Then, 

we fit the variable “Strata” with five explanatory variables, namely: States, Total members, Type of Living Quarters, 

Status of Living Quarters, and Total Expenditure 01-12.   

By applying the two different methods (parametric, nonparametric), we obtained the results that have been tabulated in 

Table (3). Table (3) displays the numerical results of the two criteria CCR and LLK obtained by utilizing two different 

methods (parametric, nonparametric) of binary outcome for four different random samples drawn from the HES data.   

 

   

Estimation 

Method  

 Parametric Logit 

Model  

  Nonparametric CDF Model  

Sample  size  n1=264  n2=306  n3=964  n4=1622  n1=264  n2=306  n3=964  n4=1622  

CCR  0.788  0.784  0.774  0.760    0.841  0.830  0.791  0.799  

LLK  -117.3  ' -167.5  -462.2  -790.5  -99.4  -133.5  -429.0  -681.3  

      

Table (3). The numerical results of the two criteria CCR and LLK obtained by utilizing two different methods 

(parametric, nonparametric) of binary outcome by utilizing different random samples drawn from the HES 

data. 

 

Having a close look at Table (3), where the comparisons based on their classification ability as well as their log likelihood 

value, we have noted that the proposed nonparametric method performed well comparing with the parametric method in 

the light of the results obtained in this work.   

The largest value for CCR and LLK obtained at the n1 and n2 sample size. As the sample size increases, we noticed that 

both methods gets closer to each other. This agrees with the simulation results obtained in the binary outcome case.  

  

4.2 The case of multinomial outcome   

In this case we considered that the dependent variable multinomial outcome which is the "Status of Living Quarters" have 

three categories with five explanatory variables (strata, States, Total members, Type of Living Quarters,, Total 

Expenditure 01-12). However, by applying the two different methods, we obtained the results that have been tabulated in 

table 4 that involves two different criteria (CCR, LLK).   

 
Table (4). The numerical results of the two criteria CCR and LLK obtained by utilizing two different methods 

(parametric, nonparametric) of multinomial outcomes by utilizing different random samples  

Drawn from the HES data. 

 

From Table (4) we can clearly see that the nonparametric method performed well than the parametric method in the light 

of the results obtained in this application. We can see that it gives the largest value for (CCR, LLK) of n1, n2 sample size 

and both methods are closed to each other as the sample size increases, and this confirms the results obtained from the 

simulation.   

 

5. Summary and Conclusion  

From the simulation study, the evaluation of our two criteria support the superiority of the nonparametric method over 

the parametric method for all possible sample sizes n as well as for all possible number of explanatory variables p. 

However, in case of small samples the nonparametric method is better able to predict the CCR values than its 

corresponding counterpart of the parametric method. Moreover, the nonparametric method performance very well as the 
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number of explanatory variables increases, where it reaches its highest level in cases of p=5. An interesting feature to 

note is that, values of CCR in both methods getting closer to each other as the sample sizes increase.  

 

In the multinomial outcomes, we have noted that the values of CCR was lower than their corresponding counterparts the 

binary outcome case. However, the nonparametric method still provides much better performance in case of small samples 

size with p=4, p=5, where it reaches its highest level in cases p=5 with n=50. Again, we have noted that values of CCR 

in both methods getting closer to each other as the sample sizes increase.    

 

In our application, we have considered four different random samples drawn from dataset, namely the Household 

Expenditure Survey 2009/10 HES for 6495 Household. In this application, we have noticed that the nonparametric 

method is better able to predict the CCR value than its corresponding counterpart of the parametric method. All results 

in this application have supported the following  

 

Conclusion:  

When sample size is n1=264, the nonparametric model performance very well in prediction comparing with the 

parametric model. Also, as the sample size increases to n2=306 we have noticed slightly drop. However, as the sample 

size increases to n3=964, n4=1622, both models tend to be close to each other in performance.     

Finally, we are hoping from this work to present an alternative approach to analyze the categorical data that may be useful 

in solving similar problems in many fields that uses the categorical data. Lastly, we may see the results obtained in this 

study are interesting because of the lack of research on this area.   
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