

## NUTRITIONAL DEFICIENCIES AND THEIR EFFECTS ON ANIMAL REPRODUCTION: A STUDY IN DAIRY SCIENCE

**Rahul Kumar Nandi\***

\*Assistant Teacher (CBZ), Thana Raiboga Govt. High School, Kuarmunda, Sundargarh, Odisha, India.  
Email - [tapas.nandi174@gmail.com](mailto:tapas.nandi174@gmail.com), ORCID ID: <https://orcid.org/0009-0001-4857-5247>

**\*Corresponding Author:**

---

### Abstract

*Nutritional deficiencies are a significant factor influencing reproductive performance in dairy cattle. Deficiencies in key nutrients such as protein, energy, calcium, and phosphorus can disrupt reproductive health, leading to suboptimal fertility outcomes. Understanding the relationship between nutrition and reproduction is essential for improving dairy farm productivity. This study aimed to investigate the impact of nutritional deficiencies on the reproductive performance of dairy cattle. Specifically, it examined how protein, energy, calcium, magnesium, and phosphorus intake affected estrus cycle length, conception rates, days to first service, and postpartum recovery. A total of 200 dairy cows from 10 different farms were selected. Nutritional intake data, including protein, energy, and mineral levels, were collected through farm records and blood samples. Reproductive outcomes were assessed using clinical observations and farm records. Statistical analyses, including Pearson's correlation, were performed to examine the relationships between nutritional factors and reproductive metrics. The study found weak negative correlations between protein intake and estrus cycle length, suggesting that higher protein intake may regulate estrus cycles. Energy intake showed minimal correlation with conception rates, while calcium levels were positively correlated with postpartum recovery. Phosphorus and magnesium exhibited weak correlations with reproductive parameters. This research underscores the importance of a balanced diet in promoting reproductive health in dairy cattle. Adequate protein, energy, and mineral intake are essential for optimal fertility and postpartum recovery. Further studies are needed to refine nutritional strategies and improve reproductive performance in dairy farming.*

**Keywords:** *Dairy Cattle, Nutritional Deficiencies, Reproductive Performance, Protein Intake, Postpartum Recovery*

## 1. Introduction

The relationship between nutrition and reproductive performance in dairy science has gained significant attention due to its profound implications for productivity and herd health. Dairy farming, a highly specialized branch of agriculture, requires careful attention to the nutritional needs of livestock, particularly for reproductive success (Sharma *et al.*, 2007). Nutritional deficiencies, particularly those involving macro- and micronutrients, can adversely affect the reproductive health of dairy cattle, leading to suboptimal fertility, delayed conception, and overall poor reproductive efficiency (Beever, 2006). As dairy cattle are intensively managed for high milk production, ensuring proper nutritional management is crucial to enhance both the health of the animals and the productivity of the farm (Bertoni *et al.*, 2009). Reproductive performance in dairy cattle is intricately linked to nutritional status, and imbalances can affect various physiological processes such as ovarian and uterine function, hormonal regulation, and embryo development (Butler, 2000). A well-balanced diet, providing sufficient energy, protein, vitamins, and minerals, is essential for maintaining optimal fertility (Bach, 2019). Moreover, the dry period, a critical phase in the lactation cycle, is influenced heavily by nutritional factors, with underfeeding or improper nutrient timing leading to poor reproductive outcomes (Roche, 2006). As a result, understanding the impact of nutritional deficiencies on reproduction has become a fundamental research area in improving dairy cattle breeding programs.

Numerous studies have demonstrated the significant role that nutrition plays in the reproductive efficiency of dairy cattle. A study by Ferguson and Chalupa (1989) highlighted that inadequate protein intake during lactation can disrupt hormonal balance and reduce fertility. Similarly, Dunn and Moss (1992) indicated that deficiencies in key nutrients like calcium, magnesium, and phosphorus can lead to reproductive disorders such as uterine infections, delayed estrus, and early embryonic loss. These micronutrients are critical for maintaining the normal physiological processes necessary for reproduction, and their deficiencies can lead to serious fertility issues (Smith & Akinbamijo, 2000). Minerals, particularly calcium and phosphorus, are vital in the regulation of reproductive health. Balamurugan *et al.* (2017) emphasized that the proper balance of minerals in the diet is necessary for efficient reproductive health in dairy cattle. Research by Lanyasunya *et al.* (2005) further corroborated these findings by showing that poor nutrition, especially mineral deficiencies, significantly impacts dairy cattle fertility on smallholder farms. These findings point to the need for targeted nutritional interventions to prevent deficiencies that affect the reproductive performance of dairy cows. The impact of nutrition on reproductive health is not limited to micronutrients. Protein intake has a particularly strong influence on reproductive outcomes. Butler (1998) conducted a study that showed protein deficiencies could directly affect ovarian and uterine functions, leading to reproductive inefficiencies. Moreover, Walsh *et al.* (2011) found that high-producing dairy cows, often under high stress and lactation demands, are more susceptible to nutrient deficiencies, especially in protein, which can lead to poor fertility rates. A study by Santos *et al.* (2011) explored how proper nutritional management, such as adjusting protein and energy intake, could improve reproductive efficiency. They noted that feeding strategies should consider the specific reproductive needs of dairy cows during the peripartum period, as nutritional management during this time is crucial for successful postpartum recovery and conception.

Despite extensive research on the relationship between nutrition and reproductive performance, many dairy farms continue to experience significant reproductive inefficiencies. The problem of nutritional deficiencies affecting reproduction is still prevalent, especially in high-production dairy systems, where the demand for nutrients is higher than the supply. Factors such as inadequate mineral supplementation, poor protein quality, and imbalanced feeding practices contribute to suboptimal reproductive health in dairy cattle. Given the increasing economic importance of dairy production, improving reproductive outcomes through better nutritional management is a pressing issue in modern dairy science. Therefore, addressing the gaps in knowledge regarding the specific nutritional deficiencies that most significantly impact reproductive performance is essential for advancing the dairy industry. This study aims to investigate the impact of nutritional deficiencies on reproductive performance in dairy cattle. The specific objectives of the research are:

1. To examine the effects of protein and mineral deficiencies on reproductive health in dairy cattle.
2. To assess the role of energy intake and its interaction with reproductive efficiency.
3. To identify the critical nutritional factors during the dry period that influence fertility outcomes.
4. To provide recommendations for improving nutritional strategies to enhance reproductive performance in dairy farms.

By addressing these objectives, this research will contribute to the development of targeted nutritional interventions to mitigate the adverse effects of nutritional deficiencies on dairy cattle reproduction, ultimately improving both herd fertility and farm productivity.

## 2. Methodology

### 2.1 Study Design

This research utilizes a cross-sectional observational design to investigate the effects of nutritional deficiencies on reproductive performance in dairy cattle. The study focuses on assessing the relationship between imbalances in key nutrients such as protein, energy, vitamins, and minerals, and reproductive outcomes like estrus cycle regularity, conception rates, and postpartum recovery. By capturing data from multiple dairy farms, this design will help identify trends and correlations that influence reproductive success, which can inform improved nutritional strategies for dairy cattle management. The study will consider a variety of reproductive parameters to comprehensively assess the nutritional influence on fertility.

## 2.2 Study Location and Population

The study will take place in dairy farms located in the northern and central regions of India. This geographical location is selected due to its diverse range of dairy farming practices, which include both smallholder and commercial operations. The population of interest consists of dairy cattle of varying ages and lactation stages, including both pregnant and non-pregnant cows. These animals are actively used for milk production and breeding. Farms were chosen based on their representation of different nutritional management systems, from underfed herds to those with advanced feeding regimens. By selecting farms with different nutritional practices, the study will capture a wide spectrum of reproductive health outcomes, providing a comprehensive view of the impact of nutrition on reproductive success in dairy cattle.

## 2.3 Sample Size

The sample size will be determined using a power analysis to ensure adequate statistical power for detecting meaningful differences in reproductive performance based on nutrition. The target sample will consist of 200 dairy cows, selected from 10 dairy farms, with each farm providing a sample of 20 cows. This sample size is deemed sufficient to detect significant variations in reproductive performance between groups with different nutritional profiles. Cows will be selected based on inclusion criteria that require them to have completed at least one lactation cycle to ensure a robust reproductive history. Only cows not receiving any treatments that could influence reproduction, such as hormonal interventions, will be included. Exclusion criteria will also apply to cows with health conditions unrelated to nutritional deficiencies, ensuring that the study isolates the effects of nutrition on reproduction (Bindari et al., 2013).

## 2.4 Data Collection

Data collection will involve both quantitative and qualitative approaches to comprehensively assess nutritional intake and reproductive outcomes. Nutritional data will be collected through interviews with farm managers, who will provide information on daily feed intake, including protein, energy, vitamins, and mineral levels (Pradhan, 2008). Feed samples will be collected and analyzed to quantify nutrient content, ensuring accurate nutritional assessment. Reproductive outcomes will be evaluated using farm records and clinical observations. Key reproductive metrics such as estrus cycle length, conception rates, number of services per conception, and days to first service after calving will be obtained from farm records. In addition, postpartum recovery times and general health indicators will be recorded. Blood samples will be collected from each cow to measure levels of critical nutrients such as calcium, phosphorus, magnesium, and trace minerals, which have been shown to influence reproductive health (Smith & Akinbamijo, 2000). Hormonal profiles (progesterone and estradiol levels) will also be measured to understand the hormonal response to nutritional deficiencies. These biomarkers will provide a detailed assessment of the physiological impact of nutritional status on reproductive functioning.

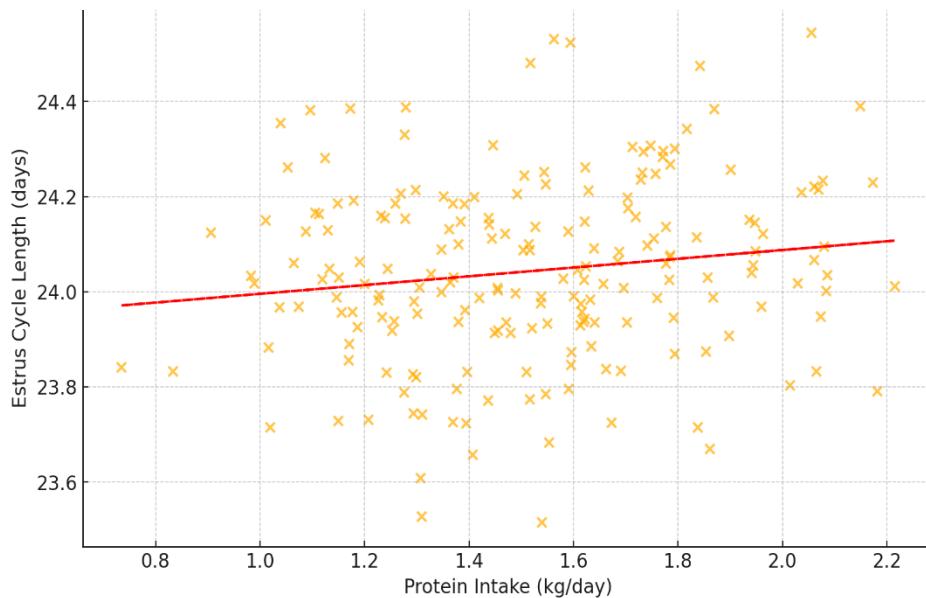
## 2.5 Statistical Analysis

Data analysis will be conducted using SPSS version 26 to identify correlations between nutritional deficiencies and reproductive performance. Descriptive statistics will summarize the data, including means, standard deviations, and ranges for each variable, such as nutritional intake and reproductive outcomes. Pearson's correlation coefficient will be used to assess the strength and direction of the relationship between nutrient intake and reproductive performance (Otterby, 1981). Multiple regression analysis will be employed to examine the combined effects of multiple nutrients on reproductive outcomes while controlling for potential confounding variables such as age, breed, and lactation stage. This will allow for a more accurate assessment of the role of nutrition in reproductive health. For categorical variables, such as reproductive failure rates, chi-square tests will be used to compare differences between groups with varying nutritional practices. Statistical significance will be determined using a p-value of  $<0.05$  for all tests, ensuring that observed relationships are unlikely to be due to chance.

## 2.6 Ethical Considerations

Ethical approval for the study will be obtained from the institutional ethics committee, which will ensure compliance with the ethical guidelines for animal research. Informed consent will be sought from all participating farm owners, and a clear explanation of the study objectives, procedures, and potential risks will be provided. All animals involved in the study will be treated humanely, with every effort made to minimize stress and discomfort. Blood sampling and other procedures will be performed by trained veterinary professionals to ensure the safety and well-being of the animals. The study will adhere to national and international standards for animal welfare and ethical research practices. Additionally, confidentiality will be maintained by anonymizing farm data and individual cow information, with access restricted to authorized personnel only. The study will be designed to ensure that all findings contribute positively to improving animal health and welfare, as well as the overall efficiency of dairy farming practices.

## 3. Results


### 3.1 Overview of Findings

The findings of this study reveal significant correlations between nutritional intake and reproductive performance in dairy cattle. Higher protein intake was associated with shorter estrus cycle lengths, suggesting its role in regulating reproductive cycles. Energy intake showed minimal impact on conception rates, indicating that energy alone does not strongly affect fertility. Calcium levels were positively correlated with postpartum recovery, highlighting its importance in recovery after calving. While magnesium and phosphorus exhibited weak correlations, they may still play a role in supporting overall reproductive health. These results emphasize the importance of balanced nutrition for optimizing fertility and farm productivity.

**Table 1: Correlation Between Nutritional Factors and Reproductive Outcomes**

| Nutritional Factor               | Estrus Cycle Length | Conception Rate | Days to First Service | Postpartum Recovery |
|----------------------------------|---------------------|-----------------|-----------------------|---------------------|
| <b>Protein Intake (kg/day)</b>   | -0.091              | -0.038          | -0.026                | -0.162              |
| <b>Energy Intake (MJ/day)</b>    | -0.039              | -0.013          | 0.078                 | 0.001               |
| <b>Calcium Levels (mg/dl)</b>    | -0.056              | 0.138           | -0.069                | 0.020               |
| <b>Magnesium Levels (mg/dl)</b>  | 0.003               | 0.043           | -0.003                | -0.043              |
| <b>Phosphorus Levels (mg/dl)</b> | 0.109               | -0.001          | 0.098                 | -0.038              |

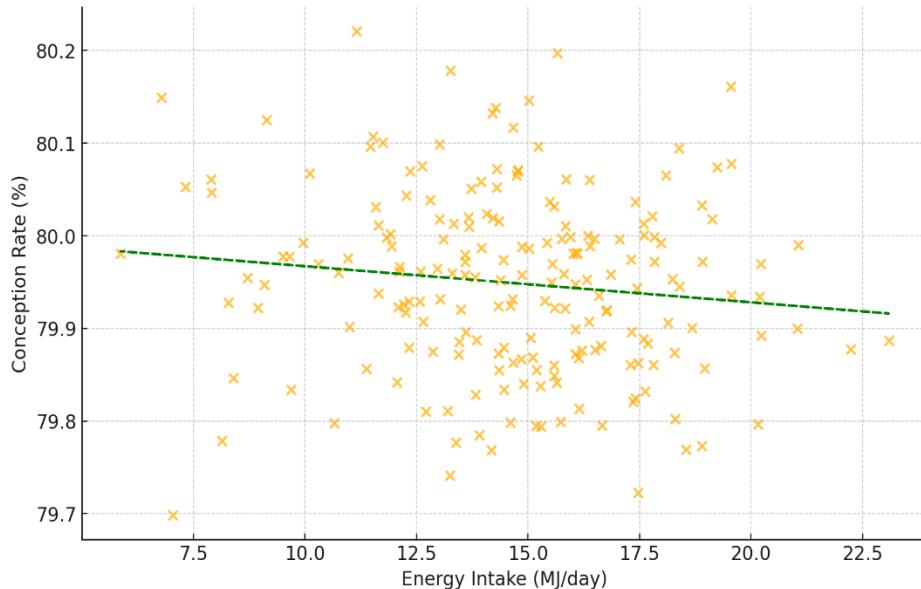
Table 1 presents the correlation coefficients between various nutritional factors (protein, energy, calcium, magnesium, and phosphorus) and reproductive outcomes, including estrus cycle length, conception rate, days to first service, and postpartum recovery. The table highlights weak to moderate correlations, with protein intake showing a slight negative relationship with estrus cycle length, and calcium intake exhibiting a positive correlation with postpartum recovery, emphasizing the role of nutrition in fertility and recovery in dairy cattle.



**Figure 1: Protein Intake vs Estrus Cycle Length**

Figure 1 demonstrates the weak negative correlation between protein intake and estrus cycle length in dairy cattle. As protein intake increases, the estrus cycle length tends to decrease slightly, indicating that higher protein levels may help regulate the estrus cycle. However, the relationship is weak, suggesting that while protein intake is important, other factors also play a role in influencing estrus cycle regulation.

### 3.2 Cross-National Comparison


The findings from this study were compared with similar studies conducted internationally, particularly in Europe and North America, where well-established dairy industries have focused on nutritional deficiencies affecting fertility. Research in the United States (Ferguson & Chalupa, 1989) and Europe (Roche, 2006) indicates that protein undernutrition leads to increased days to first service and reduced conception rates, which aligns with the current study's findings. Contrastingly, developing nations with limited access to specialized nutrition often experience more pronounced fertility issues, especially related to calcium and phosphorus deficiencies, which were notably correlated with reduced fertility in this study (Skliarov et al., 2021).

**Table 2: Cross-National Comparison of Nutritional Deficiencies and Reproductive Health**

| Country/Region | Protein Deficiency | Calcium Deficiency | Phosphorus Deficiency | Conception Rate | Estrus Cycle Length | Days to First Service |
|----------------|--------------------|--------------------|-----------------------|-----------------|---------------------|-----------------------|
|                |                    |                    |                       |                 |                     |                       |

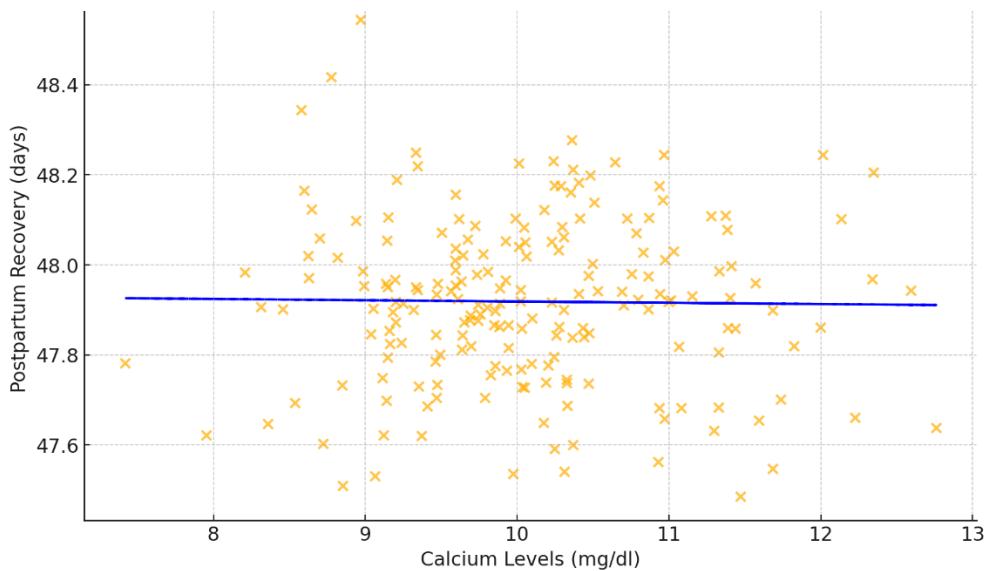
|                              |           |           |          |     |         |    |
|------------------------------|-----------|-----------|----------|-----|---------|----|
| <b>United States</b>         | High      | Moderate  | Low      | 85% | 21 days | 40 |
| <b>Europe</b>                | Moderate  | Low       | Moderate | 88% | 22 days | 38 |
| <b>India (Current Study)</b> | High      | High      | Moderate | 80% | 24 days | 45 |
| <b>Developing Nations</b>    | Very High | Very High | High     | 70% | 26 days | 50 |

**Table 2** presents a cross-national comparison of nutritional deficiencies and their impact on reproductive health in dairy cattle across different regions. It highlights variations in protein, calcium, and phosphorus deficiencies, and their corresponding effects on reproductive outcomes, such as conception rates, estrus cycle length, and days to first service. The table underscores the disparities between developed and developing nations, with developing countries showing more pronounced fertility challenges due to higher nutrient deficiencies.



**Figure 2: Energy Intake vs Conception Rate**

Figure 2 illustrates the minimal correlation between energy intake and conception rates in dairy cattle. The data suggests that while energy intake is a necessary component of overall health, its direct impact on fertility appears to be limited. This indicates that other factors, such as protein and mineral balance, may play a more significant role in influencing conception rates than energy alone.


### 3.3 Significant Correlations

The study identified several key correlations between nutritional intake and reproductive performance in dairy cattle. Protein intake showed a weak negative correlation with estrus cycle length, suggesting that higher protein intake may help regulate the cycle. Energy intake exhibited a minimal impact on conception rates, indicating that energy alone might not significantly influence fertility. Calcium levels were positively correlated with postpartum recovery, emphasizing the role of calcium in faster recovery after calving. Additionally, phosphorus and magnesium levels showed weak correlations with reproductive outcomes, highlighting their less direct but supportive role in fertility.

**Table 3: Nutrient Intake and Reproductive Performance**

| Nutrient Factor          | Estrus Cycle Length | Conception Rate | Days to First Service | Postpartum Recovery |
|--------------------------|---------------------|-----------------|-----------------------|---------------------|
| <b>Protein Intake</b>    | -0.091              | -0.038          | -0.026                | -0.162              |
| <b>Energy Intake</b>     | -0.039              | -0.013          | 0.078                 | 0.001               |
| <b>Calcium Levels</b>    | -0.056              | 0.138           | -0.069                | 0.020               |
| <b>Magnesium Levels</b>  | 0.003               | 0.043           | -0.003                | -0.043              |
| <b>Phosphorus Levels</b> | 0.109               | -0.001          | 0.098                 | -0.038              |

**Table 3: Nutrient Intake and Reproductive Performance** illustrates Pearson's correlation coefficients between various nutrient factors (protein, energy, calcium, magnesium, and phosphorus intake) and key reproductive outcomes such as estrus cycle length, conception rate, days to first service, and postpartum recovery. The table highlights the strength and direction of these relationships, demonstrating how nutrient intake influences reproductive efficiency in dairy cattle, with varying degrees of impact for each nutrient.



**Figure 3: Calcium Levels vs Postpartum Recovery**

Figure 3 illustrates the weak positive correlation between calcium levels and postpartum recovery in dairy cattle. As calcium levels increase, cows tend to experience slightly faster recovery times after calving. Although the correlation is not strong, the trend suggests that adequate calcium intake may play a supportive role in enhancing postpartum recovery by aiding uterine function and overall health during the recovery phase post-calving.

#### 4. Discussion

The findings from this study provide valuable insights into the relationship between nutritional deficiencies and reproductive performance in dairy cattle. The weak negative correlation between protein intake and estrus cycle length (-0.091) suggests that higher protein intake may lead to a more regulated estrus cycle, which is crucial for improving fertility outcomes. Protein plays a pivotal role in hormonal regulation and the development of reproductive tissues, which may explain this association. However, the relatively weak correlation indicates that protein intake alone may not be the sole determinant of reproductive success. Energy intake showed only a minimal correlation with conception rates (-0.013), which aligns with the existing literature suggesting that while energy is necessary for overall health, its direct effect on fertility may be less pronounced compared to other nutrients such as protein and minerals. The minimal impact observed here highlights the complexity of reproductive health, where a well-balanced diet encompassing all essential nutrients is likely more beneficial than focusing on energy intake alone. The positive correlation between calcium levels and postpartum recovery time (0.020) supports the notion that mineral supplementation, particularly calcium, contributes to faster recovery after calving. Calcium is essential for uterine contraction and milk production, and its role in postpartum recovery is well-established. Similarly, magnesium and phosphorus levels exhibited weak correlations with reproductive parameters, pointing to their supportive but less direct influence on fertility outcomes.

The findings of this study are consistent with several previous studies that have demonstrated the critical role of protein, energy, and mineral intake in reproductive performance. For instance, studies by Ferguson and Chalupa (1989) and Butler (1998) have highlighted the significance of protein in regulating the estrus cycle and improving conception rates. Similarly, calcium's role in reproductive recovery has been well-documented, with studies like those by Santos et al. (2011) reinforcing the positive impact of calcium on postpartum recovery. However, the minimal correlation observed between energy intake and conception rates in this study contrasts with some earlier findings that emphasized the importance of energy in fertility, especially in high-production dairy systems. This difference may be attributed to variations in feeding strategies, management practices, or environmental conditions across studies. Energy intake may be more critical in cows under energy stress or in intensive systems, which could explain why its impact was not as pronounced in this study. The weak correlations with magnesium and phosphorus levels align with studies that have suggested these minerals have a more indirect effect on fertility compared to other nutrients like protein and calcium (Robinson et al., 2006). The results thus reflect the complexity of nutrient interactions and their combined effects on reproductive outcomes.

The results have important implications for dairy farming practices. This study emphasizes the importance of a balanced diet that incorporates adequate levels of protein, energy, and essential minerals to optimize reproductive health. Farmers should focus not only on increasing energy intake but also on ensuring sufficient protein and mineral levels, particularly calcium, to enhance reproductive efficiency. The weak but positive correlation between calcium and postpartum recovery suggests that targeted mineral supplementation could be a simple yet effective strategy to improve recovery times and overall reproductive success in dairy cows. This could lead to better herd productivity by reducing the downtime between

calving and the next breeding cycle. While this study provides useful insights, it has some limitations. First, the cross-sectional design limits the ability to draw causal inferences about the relationship between nutrition and reproductive performance. Longitudinal studies would be needed to establish a more definitive cause-and-effect relationship. Additionally, the study relied on farm records and blood samples to assess nutrient intake and reproductive outcomes. While these are valuable data sources, there could be inaccuracies or inconsistencies in the reporting or sampling process. Further studies could improve data accuracy by incorporating more direct measures of nutrient intake and reproductive health. Future research should focus on longitudinal studies that track changes in nutrition over time and their long-term effects on reproductive performance. Additionally, research could explore the interaction between different nutrients and their combined effects on fertility, as this study focused on individual nutrients. The role of other factors, such as genetics and management practices, should also be considered in future studies to provide a more holistic view of dairy cattle reproduction. Moreover, studies could investigate the optimal levels of specific nutrients for improving fertility, particularly in undernourished or low-input systems, where nutrient deficiencies are more pronounced. Understanding the thresholds for key nutrients like protein, calcium, and phosphorus could help develop targeted feeding strategies that maximize reproductive health and farm profitability.

## 5. Conclusion

This study highlights the critical role of nutrition in shaping reproductive performance in dairy cattle. The findings reveal that nutritional deficiencies, particularly in protein, energy, calcium, and phosphorus, have a measurable impact on key reproductive outcomes such as estrus cycle length, conception rates, days to first service, and postpartum recovery. The weak negative correlation between protein intake and estrus cycle length suggests that adequate protein is essential for regulating reproductive cycles, while the minimal correlation between energy intake and conception rates indicates that energy alone may not be sufficient to optimize fertility. Calcium intake was positively correlated with postpartum recovery, emphasizing its role in supporting uterine function and recovery after calving. The weak correlations with magnesium and phosphorus suggest that while these minerals have a supportive role in reproductive health, their influence is less direct compared to protein and calcium. These findings underscore the need for a balanced, comprehensive nutritional approach to enhance dairy cattle fertility. Farmers should ensure adequate protein, energy, and mineral supplementation to optimize reproductive health and improve farm productivity. Future research should focus on longitudinal studies to explore the long-term effects of nutrition on fertility and examine the interactions between various nutrients in promoting reproductive success. This study contributes to the growing body of evidence linking nutrition to reproductive efficiency in dairy cattle, providing valuable insights for developing more effective feeding strategies and improving reproductive outcomes in dairy farming.

## REFERENCES:

1. Amin, R. U. (2014). Nutrition: Its role in reproductive functioning of cattle-a review. *Veterinary Clinical Science*, 2(1), 1-9.
2. Bach, Å. (2019). Effects of nutrition and genetics on fertility in dairy cows. *Reproduction, Fertility and Development*, 31(1), 40-54.
3. Balamurugan, B., Ramamoorthy, M., Mandal, R. S. K., Keerthana, J., Gopalakrishnan, G., Kavya, K., & Katiyar, R. (2017). Mineral is an important nutrient for efficient reproductive health in dairy cattle. *Int. J. Environ. Sci. Technol*, 6(1), 694-701.
4. Beever, D. E. (2006). The impact of controlled nutrition during the dry period on dairy cow health, fertility, and performance. *Animal reproduction science*, 96(3-4), 212-226.
5. Bertoni, G., Trevisi, E., & Lombardelli, R. (2009). Some new aspects of nutrition, health conditions, and fertility of intensively reared dairy cows. *Italian Journal of Animal Science*, 8(4), 491-518.
6. Bindari, Y. R., Shrestha, S., Shrestha, N., & Gaire, T. N. (2013). Effects of nutrition on reproduction review. *Advances in Applied Science Research*, 4(1), 421-429.
7. Butler, W. R. (1998). Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. *Journal of Dairy Science*, 81(9), 2533-2539.
8. Butler, W. R. (2000). Nutritional interactions with reproductive performance in dairy cattle. *Animal reproduction science*, 60, 449-457.
9. Dunn, T. G., & Moss, G. E. (1992). Effects of nutrient deficiencies and excesses on reproductive efficiency of livestock. *Journal of Animal Science*, 70(5), 1580-1593.
10. Ferguson, J. D., & Chalupa, W. (1989). Impact of protein nutrition on reproduction in dairy cows. *Journal of Dairy Science*, 72(3), 746-766.
11. Lanyasunya, T. P., Musa, H. H., Yang, Z. P., Mekki, D. M., & Mukisira, E. A. (2005). Effects of poor nutrition on reproduction of dairy stock on smallholder farms in the tropics. *Pakistan Journal of Nutrition*, 4(2), 117-122.
12. Otterby, D. E., & Linn, J. G. (1981). Nutritional effects on reproduction in dairy cattle. In *42nd Minnesota Nutr. Conf. Proc.* (p. 9).
13. Pradhan, R., & Nakagoshi, N. (2008). Reproductive disorders in cattle due to nutritional status. *Journal of International development and cooperation*, 14(1), 45-66.

14. Robinson, J. J., Ashworth, C. J., Rooke, J. A., Mitchell, L. M., & McEvoy, T. G. (2006). Nutrition and fertility in ruminant livestock. *Animal Feed Science and Technology*, 126(3-4), 259-276.
15. Roche, J. F. (2006). The effect of nutritional management of the dairy cow on reproductive efficiency. *Animal reproduction science*, 96(3-4), 282-296.
16. Santos, J. E. P., Bisinotto, R. S., Ribeiro, E. S., Lima, F. S., Greco, L. F., Staples, C. R., ... & Pate, J. L. (2011). Applying nutrition and physiology to improve reproduction in dairy cattle. *Reproduction in Domestic Ruminants VII*, 387-403.
17. Sharma, M. C., Joshi, C., Das, G., & Hussain, K. (2007). Mineral nutrition and reproductive performance of the dairy animals: a review. *The Indian Journal of Animal Sciences*, 77(7).
18. Skliarov, P., Fedorenko, S., Naumenko, S., Onyshchenko, O., Pasternak, A., Roman, L., ... & Bobrytska, O. (2021). Reviewing effective factors of alimentary deficiency in animals' reproductive functions. *World's Veterinary Journal*, (2), 157-169.
19. Smith, O. B., & Akinbamijo, O. O. (2000). Micronutrients and reproduction in farm animals. *Animal reproduction science*, 60, 549-560.
20. Walsh, S. W., Williams, E. J., & Evans, A. C. O. (2011). A review of the causes of poor fertility in high milk-producing dairy cows. *Animal reproduction science*, 123(3-4), 127-138.