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Abstract:- 
This study provides the effect of correlation functions on the solution of nonlinear differential equations system (DES). 

For illustration, an application of the case of interacting biological system is introduced for multispecies population, 

Moreover, the concept of stability and identification of equilibrium points are studied, this obtain the analytic 

approximate solutions. In order to evaluate the solution of the correlation functions, this study has been limited on the 

chronological correlation functions of the two type’s; auto and cross. That is to reach the expense of second and third- 

correlation functions.   
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INTRODUCTION  

      The Lotka-Volterra model [1, 2] is widely used to study the dynamics of interacting species in ecology and elsewhere 

[3]. Kapur [4] says in his literature, we are not first restricted to the use of mathematical techniques already known. In 

fact, one role of mathematicians interested in biological and medical problems is to evolve new mathematical methods 

for dealing with the complex situations in life sciences [5]. In order to, analyzed the stability of continuous and discrete 

population models, he examined the stability of models for interacting species with same points of equilibrium, using 

difference equation system. [6] Studied moments for some general birth death processes, he determined the moments of 

all orders for the probability distribution of ultimate size of the population the generalized birth and death processes with 

twin births being studied in [7] where he used the difference equation technique. It had been shown in [8] that equilibrium 

point for predator-prey models with discrete time lage is always unstable. the use of hypergeometric functions to 

generalized Birth and death processes is given by[9] he enumerates the number of possible relations between probabilities 

of ultimate extinction of birth and death processes. In his paper titled some mathematical models for population growth, 

he decided one of the most successful models for explaining the growth of populations of bacteria and even of humans is 

the so-called Logistic model [10].  

 

      The combined use of game theory and modified volterra equations in describing the population dynamics is treated 

by [11] that concluded that volterr’s system of differential equations for n interacting species has been modified and it is 

shown that the modified system is equivalent to the system of cubic differential equations obtained earlier for animal 

conflicts from considerations of theory of games. In his study of nonlinear continuous- time discrete- age- scale population 

models, he showed that whenever the corresponding linear model predicts exponential growth, the nonlinear model gives 

a stable equilibrium age-distribution [12]. The study of the effect of Harvesting on competing population is due to [13], 

it showed that for the simplest competition model for two species there are four non-degenerate possibilities for ultimate 

behavior according as (i) the first species alone survives, (ii) the second species alone survives, (iii) the two species 

coexist, in stable equilibrium and (iv) the two species coexist in unstable equilibrium, and the survival of first or second 

species depends on the initial population size. Another study [14] is treated the optimal foraging and predator-prey 

dynamics. And [15] treated the periodicity in a delayed ratio-dependent predator-prey system. Lin QIV and Taketono 

MITSUI [16] discussed the problem of predator-prey dynamics with delay when prey dispersing in n-patch environment.  

Previous study has proposed a model to describe the interaction between a diseased fish population and their predators he 

analyzed the stability of equilibrium points for a large range of parameter values [17]. Paul [18] develops a mathematical 

model of a biological arms race between a class of predators and a class of prey where the prey is dangerous to the 

predators, Ross Cresman [19] studied the evolutionary stability in LotkaVolterra system. And [20] is studied the global 

stability of a predator-prey system with stage stricture for the predators. Previously manipulated the spatial dynamics and 

cross-correlation in a transient predator-prey system [21]. The effects of correlated interactions in a biological convolution 

model with individual-based dynamics is a research given by [22]. Rozenleld [23] introduces the concept of coherence 

into the predation of biological system through his work titled on the influence of noise on the critical and oscillatory 

behavior of a predator-prey Models: coherent stochastic resonance at the proper frequency of the system. Both [24, 25] 

introduces vibrational iteration method for solving multispecies lotka-volterra equations. Nicola [26] has proposed utility 

functions and lotka-volterra model: A possible connection in predator-prey game. Susmitapaul [27] introduces numerical 

solution of lotka-volterra prey predator model by using runge-kutta Fehlberg method and Laplace a domain decomposition 

method. In addition [28] discuss application of perturbation-iteration method to lotka-volterra equations. Nourataher in 

[29] studied analysis of hybrid dynamical systems with an application in biological systems.  

 

       In this paper we shall study the two types of interaction between more than two species of Biological system. Namely, 

the predation and the compition via Lotkavolterra, besides we represent a mixed model for the predation and competition. 

Also we shall generalize the two species case to investigate the effects of interactions among any number of species. 

Moreover, the concept of stability and identification of equilibrium points are studied, this obtain the analytic approximate 

solutions. In order to evaluate the solution of the correlation functions.  

 

THE BASIC SYSTEM OF EQUATIONS OF VOLTERRA’S MODEL 

The basic system of equations for ninteracting species can be written as 

 
Due  to  interaction  between  the i-th  and  j-th  species,  the  changes  in  the  two  populations per unit time are given by

respectively. Assuming that all interactions are of the predator–prey type have opposite 

sings.  Moreover, if the ratio of changes in the two populations is then we can write, 

 
so that (2.1)becomes 
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We  also  assume  that  the  Verhulst  term  or  the  resource-limited  term  is  absent  for  each species so that aii= 0for all 

i. Using(2.2), we find that the matrix( aij)is skew symmetric.Let qidenote the equilibrium or the steady-state value of  Ni. 

Then (2.3) gives 

 
If none of the q’sis zero, we get 

 
Equation (2.5) gives unique finite values for q1, q2, ...,qnif the determinant of the matrix 

 
However,  we  know  that  the  determinant  of  a  skew-symmetric  matrix  of  odd    order  is always zero so that  (2.5)  

does not give unique finite values for q1, q2, ...,qnif nis odd. Our  model  will therefore  have  non-zero  equilibrium  

population  sizes  only  when  the number of species is even and  

We  shall  also  assume  that  the  parameters  have  such  values  that qi’s come  out  to  be positive.  

Again, multiplying (2.5) by qi and summing for all i, we get 

 
Since the right-hand side of (2.7) vanishes because of the skew-symmetry of (aij). Since,  and assuming all qi’s to 

be positive, all ki’s cannot be positive 

 

Existence of Constant of Motion     

 
Where logarithm here and throughout this chapter is to the base e. Then we easily see that 

 
so that  may be regarded as a measure of the departure of Ni from qi.  

Substituting from (3.1) in (2.3), we get 

 
From (2.5) and (3.3): 

 
Multiplying both sides by  and summing for i from 1 ton, we get 

 
On account of the skew-symmetry of the matrix (aij), the right-hand side of (3.5) vanishes 

 
Integrating (3.6), we obtain 

 
 

Where Ni0 is the initial value of  Ni .Thus there  exists  a constant  of  motion  which  is  the  sum of  a  number  of  similar 

components. Each of these components is positive since, whe  

Are positive. As time  changes,  each  component Gi changes,  but  the  sum  of Gi 

remains  constant  and  finite. Gi increases or decreases according as the population of the i-th species increases or 

decreases since As  time  progresses,  populations  of  some  species  increase, while  populations  of  other 

species decrease in such a way that  G does not change. G does of course depend on the initial populations of the n species. 

Also, since G is finite, the population of every species remains finite. 

From (2.3), (2.5), and (3.7) 
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All the terms on the right-hand side of (3.8) vanish because of the skew-symmetry of (aij), and this again verifies that G 

is a constant of motion. Further, if   

 
Since the resource-limiting coefficient aii always less than or equal to zero, we find that 

 

So that, in the case when  for all i, G is not a constant but a monotonic decreasing function of t. The maximum 

value of G occurs when Ni=Ni0 and the minimum value occurs when Ni=qi for all i. Stability of Equilibrium Point We 

know that, in the equilibrium point  

 
The community matrix, whose eigenvalues determine the stability, is 

 
This matrix is the product of a symmetric matrix D and a skew-symmetric matrix A and, therefore, all its eigenvalues are 

purely imaginary or zero. However, since we are taking n to be even and all the eigenvalues in our matrix are 

purely imaginary so that the secular equation is of the from  

 

 
Because of the skew-symmetry of (aij). Integrating (4.6), we get 

 

Which is a hyper ellipsoid in the n-dimensional space with v1, v2,...vn as the coordinates. If we write  

gives, on retaining the lowest powers ui 

 
x which is again a hyper ellipsoid  with  center q1,  q2,...,qnin   n-dimensional  space. Thus, for small perturbations from 

the equilibrium point, the trajectory always lies on a closed hypersurface. This shows that the equilibrium is neutral and 

conservative oscillations occur about the equilibrium point. Even when the perturbations are not small, or when (3.7) is 

used, the trajectory lies on the hypersurface. 
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Which is a closed hypersurface meeting every straight line parallel to the axes in two points. The trajectory need not be 

closed except for n = 2. 

Even for small oscillations, the periods are and there may not be any period which is an integral 

multiple of all these periods. Thus, for a four species model, if the periods are the 

trajectory for small  oscillations  will  return  to  the  initial  point,  but  if  the  periods  are   then  

the  trajectory  will  never  return  to  the  starting  point  though  it  may  come arbitrarily  close  to  it.  Similar results 

hold when oscillations are not small.  Thus,  in general,  the  trajectory  always  lies  on  a  closed  hypersurface,  but  it  

is  not  closed  except when n = 2. The trajectory point goes on moving round and round the hypersurface (4.9) without 

its ever returning to the original point.  Moreover, the motion is also not strictly periodic except when n=2. 

 

The foregoing discussion shows that the result about the neutrality of equilibrium point holds not only for local or 

neighbourhood stability, but also for global stability. This is confirmed by the existence of a function G which is always 

positive and whose derivative G/dt is negative semi-definite.. Thus, G acts as a Lypunov function. When aii=  0,it  is  seen  

that  there  are  conservative  oscillations  about  the  equilibrium point irrespective  of where  the initial  points are;  when 

 the  matrix Ahas at  least some  non-zero  diagonal  elements  and  is  not  skew-symmetric.  The  eigenvalues  

of  the community  matrix  (4.3)need  not  be  purely  imaginary,  and  the  equilibrium  is  no  longer neutral. As already 

noted, when n=2, the equilibrium is locally stable and, because of the existence of the Lypunov function G, it is globally 

stable. Thus the non-zero values of aii, however  small  they  may  be,  change  the  nature  of  the  equilibrium.  This is 

expressed by saying that volterra’s model is structurally unstable. A model is said to be structurally stable if small changes 

in its parameters do not change the nature of the equilibrium point. Volterra’s model is structurally stable if we consider 

small changes in aij’s  only. but it is structurally unstable if we introduce Verhulst terms (however small these 

may be) because,  without  these  terms,  there  is  neutral  equilibrium  ;  with  these  terms,  the equilibrium may be stable 

or unstable. However, we may note that, whether aij is zero or not, the results of local stability analysis extend to global 

stability analysis because of the existence of the Lypunov function. 

 

Solutions of Volterra’s Model for n Interacting Species  

The basic system of equations for n interacting species can be written as 

 

 

 
Then, 
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In matrix form equations (5.5) , (5.6)and (5.7) take the form 

 
We shall solve the equation 

 
Leads to the set of linear algebraic equations 

 
Which determine the eigenvalues and eigenvectors of A.  

Now the eigenvalues of Aare given by 

 
The roots of cubic equation are 

 
Then the eigenvector are 

 
The general solution of the equation (5.9) are 
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Form equation (5.12) into (5.4) we get: 

 
We can treat the nonlinear problem iteratively considering N1 (t), N2 (t) and N3 (t) as a 1st approximation

then the 2nditerative solution can be obtained from: 

 

From equation (5.13) in to (5.14) and integrating we obtain similarly can be obtained 

the 3rd approxim  

 
Second and Third-Order Correlation Functions  

Besides the pair correlation function  which measures the interaction between pairs of species there is another 

fine interaction between triplets of species defined b 

 

 

 
In our study the expected value of a function f (t) is defined by 

 
using equation (6,2) for  and from equation (5.13) we have 
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By definition of we can calculation for and by definitions of 

we can calculation for  

 

CONCLUSIONS  

 In this paper we considered two nonlinear systems one of them is of two equations and the other is of three equations, 

describing the evolution of rather complicated, the multispecies systems the iterative solutions are obtained where we are 

interested to study the Non-linear systems; so we achieved three requirements (i) study of equilibrium points and the 

associated stability, (ii) Analytical approximate solutions are obtained and lastly (iii) the correlation functions are 

computed. This study has been limited on the chronological correlation functions of the two type’s; auto and cross. That 

is to reach the expense of second and third- correlation functions.  

 

REFERENCES  
[1].Lotka AJ: Elements of Physical Biology, New York, Williams and Wilkins, 1925.  

[2].Volterra V: Variazioni e fluttuazioni Del numerod, individui in specie   animaliiiconviventi, Mem AcadLincei 3, 31-

113, 1926.  

[3].Murray JD: Mathematical biology, 2nd ed. New York, Springer, 1993.  

[4].J. N. Kaput: Mathematical Models in Biology and Medicine, Affiliated East- WestiPress Private Limited New Delhi, 

1992.  

[5].J. N. Kapur: Stability Analysis of Continuous and Discrete Population Models, IndianiiJ. Pure Appl. Math. , Vol 9 pp 

702-08, 1976.  

[6].J. N. Kapur: Moments for Some General Birth and Death Processes, Jour. Ind. iiAcad.iMaths, Vol 1 pp 10-17,1979.  

[7].J. N. Kapur, Umakumar: Generalised Birth and Death Processes with Twin iiiBirths,iNat Acad. Sci. Letters, Vol 1 pp 

30-32,1978.  

[8].J. N. Kapur: Predator-Prey Models with Discrete Time Lags, Nat. Acad. Sci.iLetters,iVol 2 pp 237-75,1979.  

[9].J. N. Kapur: Application of Generalized Hypergeometric Functions to GeneralizediBirth and Death Processes, Indian 

J. Pure Appl. Math. Vol 9 pp i1159-   69, 1978.  

[10]. J. N. Kapur ,Q.J.A.kahan: Some Mathematical Models for Population Growth Indian J. PureAppl . Math., Vol 10 

pp 277- 86, 1979.  

[11]. J. N. Kapur, F. N. A: Population Dynamics via Games Theory and Modified Volterra Equations, Indian J. Pure 

Appl. Math, Vol 11 pp 347-53, 1980.  

[12]. J. N. Kapur, F. N. A: Nonlinear Continuous-Time Discrete-Age-Scale PopulationiModels, Indian J. Pure Appl. 

Math. Vol 11 pp 682-92, 1980.  

[13]. J. N. Kapur: The Effect of Harvesting on Competing Populations, MathematicaliBiosciences, Mathematical 

Biosciences, Vol 51 pp 175– 85,1980.  

[14]. VlastimilkŘivan: Optimal Foraging and Predator-Prey Dynamics, Theoretical Population Biology 49,265-290,1996  

[15]. Meng For, kewang: Periodicity in a Delayed Ratio-Detention Predator- Prey iiiSystem, Journal of Mathematical 

Analysis and Applications 262, 179-190,2001.  

[16]. Lin QIU, Taketomo Mitsui: Predator-Prey Dynamics with Delay when Prey iiiDispersing in n-Patch Environment, 

Graduate School of Human Informatics, iiiNagoya University, Japan, pp 1-14,2002.  

Volume-1 | Issue-4 | Dec, 2015 28



[17]. Chris Flake, Tram Hoang, Elizabeth Perrigo: A Predator-Prey Model with iDiseaseiDynamics, Under the Direction 

of Dr. Glenn Ledder, Department of Mathematicsiand Statistics, University of Nebraska- Lincoln, pp 116,2003.Paul 

Waltman, James Braselton, and Lorraine Braselton: A Mathematical Model ofia Biological Arms Race with a 

Dangerous Prey, J. Theor Biol, 218, 55-i70,2002.  

[18]. Ross Cressman, J. Garey: Evolutionary Stability in Lotka-Volterra Systems, J ofiiTheoretical Biology, 222,  233-

245, 2003.  

[19]. Yan Ni Xiao, Lan sun Chen: Global Stability of a Predator-Prey System with Stagei Structure for the Predator, Acta 

Mathematica Sinica, English Series, Vol. ii19, No .i2, pp.  1-11, 2003.  

[20]. PATRICK C. TOBIN, OTTAR N. BJØRNSTAD: Spatial Dynamics and Cross-iCorrelation in a Transient Predator-

Prey System, Journal of Animal Ecology, 72, -467, 2003.  

[21]. Volkan Sevim, Per Arne Rikvold: Effects of Correlated Interactions in a BiologicaliCoevolution Model with 

Individual-Based Dynamics, J. Phys. A. ii math .Gen. 38, -9489, 2005.  

[22]. A. F. Rozenfeld, C. J, Tessone, E. Albano and H. S .wio: On the InfluesnceiiofiiNoise on the Critical and Oscillatory 

Behavior of a Predator-Prey Model:iiCoherentiStochastic Resonance at the Proper Frequency of the System, aleroz 

@ iinifta. unlp.iedu. ar, pp 1-18, (March 2006).  

[23]. B. Batiha, M. S. M. Noorani, I. Hashim: Variational Iteration Method for Solving iiiiMultispecies Lotka-Volterra 

Equations, Computers and Mathematics with iApplications 24, 903-909, 2007.  

[24]. Jing Ruan, Yanhua Tan, Changsheng Zhang: A Modified Algorithm for iiiiApproximate Solutions of Lotka-Volterra 

Systems, Procedia Engineering 15, iiii1493-1497, 2011.  

[25]. Nicola Serra: Utility Functions and Lotka-Volterra Model: A Possible Connection iiiniiPredator-Prey Game, Journal 

of Game Theory, 3(2), 31-34, 2014.   

[26]. Susmita Paul, Sankar Prasad Mondal, Paritosh Bhattacharya: Numerical Solution iiofiiLotka-Voiterra Prey Predator 

Model by Using Runge-Kutta-Fehlberg Method iiiandiiLaplace Adomian Decomposition Method, Alexandria 

Engineering Journal iiii55, 613-i617, 2016.  

[27]. YiğitAksoy, ÜnalGöktaş, Mehmet Pakdemirli, IhsanTimuçinDolapçı: Application iiof Perturbation-Iteration 

Method to Lotka-Volterra Equations, iiAlexandria Engineering Journali55, 1661-1666, 2016.  

[28]. Noura A. Abdulrazaq Tahar, Analysis of Hybrid Dynamical Systems with aniiApplication in Biological Systems, 

Thesis of Master, Çankaya University,2017.  

  

 

Volume-1 | Issue-4 | Dec, 2015 29




