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Abstract:- 
We report a numerical simulation of the action of the one 85𝑅𝑏 atom micromaser which shows that the micromaser field 

evolves towards a steady state equilibrium when the condition that 𝑇𝑝  𝑡𝑖𝑛𝑡  satisfies. In this steady state regime the 

cavity field reaches a steady state after a sufficient number of atoms have passed through the cavity. The cavity 

temperature T and the cavity quality factor Q can produce a quantitive change when one of them or the two are changed 

but they are not responsible for the qualitative changes in the micromaser field. Evidently the only responsible parameter 

for these qualitative changes is the repetition time 𝑇𝑝 namely if 𝑇𝑝  𝑡𝑖𝑛𝑡then the micromaser field evolution is towards a 

steady state equilibrium. In contrast when 𝑇𝑝 reduced to the order of 𝑡𝑖𝑛𝑡 then the micromaser field evolution is controlled 

by the trapping state dynamics – no steady state is apparent in this case. The first going-up trapping state at n=3 plays a 

significant role in the early dynamics of the micromaser field. Moreover the state of the field ultimately evolves towards 

a mixed state rather than a pure state. 
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INTRODUCTION  
The quantum theory of the micromaser was first developed  by Mystre et. al.[1]. This theory is a direct application of the 

quantum theory of the laser to a problem of two level Rydberg atoms interacting with a single mode radiation field in a 

microwave cavity [2-8]. In most studies of theone photon micromaser theorythe injection of atomsassumes to have 

Poisson distribution and all atoms always entered the cavity in their excited (upper) states. This device, the micromaser, 

exhibits highly non-classical features such as a sub-Poisson statistics for the field, quantum revivals and trapping states. 

The most of these features are experimentally realized [9-11]. In this work we assume that the atoms are pumped into the 

cavity in a coherent superposition of their upper and lower atomic states and the cavity is at finite temperature T. Our 

concern is about the effects of the black body radiation in the cavity (initial thermal field) and the effects of the damping 

rate on the evolution of the micromaser cavity field coupled to a heat bath at temperature T. for the measurement of the 

EPH - International Journal of Applied Science | ISSN: 2208-2182 urity of the state reached by the cavity field we employ 

the entropy 𝑆 = 𝑇𝑟 𝜌 ln 𝜌. This work organized as follows: in section2 the model and the calculations of the equations of 

motion are introduced whilein section 3 the solution to the equations of motion is introduced. The numerical results and 

their discussions are given in the fourth section and at the last section the conclusion is given.  

 

The Model  

The micromaser consists of two level Rydberg atomic beam (i.e85𝑅𝑏 atoms) pumped into a high-Q microwave cavity 

containing a single mode radiation field such that only one atom at any given time is present inside the cavity and the 

atom flies through the cavity in a very short time compared to the time between any two successive atoms in the atomic 

beam. It has been assumed that no coupling between the single mode and the heat bath during the interaction time 𝑡𝑖𝑛𝑡 so 

when the atom is inside the cavity the problem is well described by the Jaynes- Cummings Hamiltonian (J-C) [12] only 

and when the atom exits the cavity the coupling between the heat bath and the single mode is switched on.  

 

In this work a different approach to this problem is introduced. in general at any point in time of the motion we solve for 

the total density operator 𝜌 for the atom plus the field, that is, the coupling between the cavity field and the heat bath is 

switched on throughout the whole motion and not only when the cavity is empty of atoms. The damping process is 

governed by the master equation of the damped harmonic oscillator given by equation [13]  

 
 

(1) We illustrate the case when atoms enter the cavity in a coherent superposition state.  

We use the J-C model as a fundamental model where the total Hamiltonian of the system (atom + field) is given by [12]  

𝐻 = ħ𝜔𝑎†𝑎 + ħ𝜔0𝜎𝑧 + ħ𝑔(𝑎†𝜎− + 𝑎𝜎+)   (2) 

 

For the case of the single cavity mode is coupled to the heat bath at temperature T>0, and the atom is coupled to this bath 

only via this cavity mode, the total density operator 𝜌 for atom plus field satisfies the master equation for the high Q-

cavity which is given by  

𝜌 ̇(𝑡) = −𝑖[𝐻, 𝜌] − 𝜅(𝑛𝑡ℎ + 1)[𝑎†𝑎𝜌(𝑡) − 2 𝑎𝜌(𝑡)𝑎† + 𝜌(𝑡)𝑎†𝑎] − 𝜅𝑛𝑡ℎ[𝑎𝑎† 𝜌(𝑡) − 2𝑎†𝜌(𝑡)𝑎 + 𝜌(𝑡)𝑎𝑎†]   (3) 

 

Where H is the J-C Hamiltonian eqn.(2) when and only when there is a single atomin the cavity. On the other hand when 

there is no atom in the cavity the above differential equation becomes: 

𝜌 ̇(𝑡) = −𝑖[𝐻0, 𝜌] − 𝜅(𝑛𝑡ℎ + 1)[𝑎†𝑎𝜌(𝑡) − 2 𝑎𝜌(𝑡)𝑎† + 𝜌(𝑡)𝑎†𝑎] − 𝜅𝑛𝑡ℎ[𝑎𝑎† 𝜌(𝑡) −2𝑎†𝜌(𝑡)𝑎 + 𝜌(𝑡)𝑎𝑎†]       (4) 

 

Where𝐻0 = ħ𝜔𝑎†𝑎  is the Hamiltonian of the cavity field,   𝜅 =  𝜔𝑄−1 is the cavity damping constant with Q is the cavity 

quality factor. The cavity damping time is 𝑇𝑐 = (2𝜅)−1  

Since the two –level atom is in a coherent stat i.e.  

 
 

Since the coupling between the atom with upper state |𝑒 > and lower state |𝑔 >and the single mode radiation field is 

present during the motion the space is spanned by states |𝑔 > |0 > , |𝑒 > |𝑛 > , |𝑔 > |𝑛 + 1 > for n=0,1,2,….. here |0> is a 

vacuum state. In this case we should solve for the four coupled elements:𝜌𝑒,𝑛;𝑒,𝑚,  𝜌𝑔,𝑛+1;𝑔,𝑚+1, 𝜌𝑒,𝑛;𝑔,𝑚+1, 

𝜌𝑔,𝑛+1;𝑒,𝑚    

 

The differential equations for these coupled elements can be written in matrix form as:  

𝜓 ̇ (𝑘)(𝑛, 𝑡) = 𝐴̅(𝑘)(𝑛)𝜓(𝑘)(𝑛, 𝑡) + 𝐵(𝑘)(𝑛)𝜓(𝑘)(𝑛 + 1, 𝑡) + 𝐶(𝑘)(𝑛)𝜓(𝑘)(𝑛 − 1, 𝑡)                               (6) 

 

In which the  𝜓(𝑘) ≡ 𝜓(𝑛, 𝑚) and 𝑘 = 𝑚 − 𝑛 represents the degree of off-diagonality  
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The 4-column vectors 𝜓(𝑘)(𝑛, 𝑡) are  

 

 
 

Exact Solution:  

Now we solve the equations of motion of the density matrix 𝜌 which are expressed in the matrix form eqn.(6).  

First of all we assume that all atoms are prepared in the coherent superposition of their upper and lower states namely   

 
Where eqn.(5) has been used  

The single mode cavity radiation field is initially in a diagonal thermal state (𝑛𝑡ℎ)𝑛 𝜌𝑛,𝑚 = 𝛿𝑛,𝑚 ( 𝑛𝑡ℎ+1)𝑛+1 

(13) Where 𝑛𝑡ℎ  is the thermal photons inside the cavity. 

For n=0, m=0 from eqn.(7) we put  

 
In  order  to solve  eq. (6)  with  the  initial  conditions  eqns. (12-16)  we  take  the  Laplace transformation 
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From eq. (6) this transformation gives the following three-term matrix recurrence relations, 

 

 
 

Apparently  this  equation  (18)  is  a  three-term  matrix  recurrence  relation  in  terms  of n and since it is also a three-

term matrix recurrence relations in terms of m it is sufficient to work with labels n only for fixed k (n and n+k) 

Following Risken [14] these three-term matrix recurrence relations eqns.(18) have solutions expressible in terms of matrix 

continued fractions. To get the solution one can truncate these equations at the (Nth, Mth) term. Thus 

 
By inserting the ansatz 

 
in the eqn.(18) yields 

 

It should be understood that the functions are z-dependent. 

Now we make truncation to these equations at suitable values of N and M and then by downward iteration we get, 

 
 

The solution when the cavity is empty of atoms can be obtained by employing the master equation of the damped harmonic 

oscillator in the rotating frame that is [13] 

 
where the density matrix 𝜌  is for the micromaser cavity field only. In photon number basis the density matrix elements 

of this equation are,  

 
The solution to this differential equation is given by [15] 

 
Therefore through these relations with suitable values of n and m and by iteration the function 
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 is obtained. After obtaining all  

we calculate the reduced density matrix elements of the cavity field by tracing over the atomic 

variables by using the relation 

 
The diagonal elements of the density matrix 𝜌(0)(𝑛) can be used for  the  calculation of the following physical observables. 

 

This equation is for the case when 𝜌 is diagonal that is when only When  

 

 
 

Numerical results and Calculations  

In these calculations the investigations will be for case when the atoms are in their upper states where  

With regular inputs, the cavity field evolves towards a 

steady state as in Fig.(1a). Initially the trapping state at  

 
is not an exact trapping state. However it is n=13 and  not  n=15  (the  2ndtrapping  state)  which  plays an  important  role  

even for N=50  (𝑃13=0.043).  Similarly for N=150 (𝑃13=0.15). Ultimately, the cavity field reaches a steady state and the 

𝑃13=0.322 is the largest 𝑃𝑛in a bell-shaped grouping in 11≤𝑛≤16 centred about it as N=1000. The average photon number 

<n> Fig.(1a) rises rapidly from black body value to nearly  n=3  (the  first  trapping  state),  then  jumps  this  state  and  

steadily  increased  towards the second trapping state n=15, and since 𝑔𝑡𝑖𝑛𝑡=1.54the field traps at 𝑛≈13 (n=13.387 at 

N=1000) for the reasons mentioned above.  

The variance Fig. (1b) initially drops from black-body value to v=0.35 at N=7 then increases to its most maximum v=1.94 

at N=98 where it starts decreasing towards a nearly steady value v=0.384 at N=1000 The entropy S Fig.(1c) shows that 

the cavity field ultimately evolves towards a mixed state. Similarly the probability 𝑃|𝑒> that the atom exits the cavity in 

its upper state initially increases Fig. (1d) and becomes large compared with 𝑃|𝑔> that is the probability of lower state, 

then it decreases slowly and finally reaches a fixed value. 
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The effect of the cavity temperature T on the micromaser field is shown in Figures (2). For T=70mK with fixed parameters 

as in Figures (1), the micromaser field evolves towards a steady state similar to the situation of Figs.(1), namely the 

change in the micromaser field is a quantitative change and not a qualitative change when the temperature of the cavity 

is reduced to this very  low value  and the  other parameters  are kept constant (fixed). The main difference between the 

observations of Figs. (1) And Figs.(2) is that: a long time (large number of atoms) is needed before reaching a steady state 

when the temperature of the cavity becomes very low. This  is  clear  when  we  realize  that  the  steady  state  is  nearly  

reached  in  Fig.(1)  when approximately 103atoms have passed through the cavity, where as in Fig.(2), up to 2800 atoms, 

the field is still in its way to a steady state and it does not reach it yet . 

In addition to the effects of the temperature in this regime we also investigate (through figures3) the effects of the cavity  
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For the parameters of Fig.(2) but 𝑄 = 19 × 1010, we plot in Figs.(3) the same observables as in Figs.(2). We find that the 

average photon number <n > behaves initially similar to that of Fig.(1a) and Fig.(2a), but as N increases the photon 

number evolves towards a steady state and traps at N=15 (Fig.(3a),Fig.(3e)) instead of N=13 as in the previous figures. It 

is evident that the increase in Q value enhances the quantum character of the cavity field such as the sub-Poisson statistics 

(Fig.3b), namely the quantum features become apparent more and more by increasing the cavity quality facto Q. Moreover 

the purity of the cavity field is improved by increasing Q even though the evolution is still towards a mixed state as before. 

The difference between 𝑃|𝑒>and 𝑃|𝑔>is nearly fixed at large N (Fig.(3d)).  

 

Volume 07 Issue 04-Dec, 2021 7



 

 
 

To achieve a qualitative change in the micromaser we plot in Fig.(4) the same quantities of Fig.(1) but with 𝑔𝑡𝑖𝑛𝑡  𝑔𝑇𝑝 

= 1.54 and the other parameters are fixed. Even for this high temperature T and for this large value of Q no steady state 

in the variance v is apparent for this range of N. Moreover, the dynamics of the cavity field, for this set of parameters, can 

be described as non-steady trapping state dynamics [  ] where 𝑃3, 𝑃16, 𝑃36(Fig.4e) play a significant role in this dynamics. 

In this situation the average photon number Fig.(4a) continues its increase after passing both, the first trapping state N=3 

and the second trapping state N=15. The variance vFig.(4b) falls from black-body value to v=0.249  at N=12 and rises to 

its maximum v=2.78  at N=358, beginning a slow decrease afterwards. The measure of the state purity S is shown in 

Fig.(4c).For this range of N, the number of atoms, the cavity field is still evolving towards a mixed state S>0 (and still 

increasing) rather than a pure state (an evolution towards pure state occurs at 4 ≤ 𝑁 ≤ 19 however).  

The probability 𝑃|𝑒>is still larger than 𝑃|𝑔>at higher N's (Fig.(4d)).  
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To investigate the effects of the reduction of the cavity temperature T in this regime, we plot in figures 5 the same 

quantities for T=70mK and the other parameters are kept constant as in figures 4. From all the figures it is apparent that 

the reduction of the cavity temperature has no clear effect on the behaviour of the cavity field in the "trapping state 

dynamics" regime. Therefore, when the trapping states are effective (trapping state dynamics) the micromaser field 

becomes insensitive to the changes in T and Q.  
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CONCLUSION  

We report a numerical simulation of the action of the one85𝑅𝑏 atom micromaser which shows that the micromaser field 

evolves towards a steady state equilibrium when the condition that 𝑇𝑝  𝑡𝑖𝑛𝑡 satisfies. In this steady state regime the cavity 

field reaches a steady state after a sufficient number of atoms have passed through the cavity. The cavity temperature T 

and the cavity quality factor Q can produce a quantitive change when one of them or the two are changed but they are not 

responsible for the qualitative changes in the micromaser field. Evidently the only responsible parameter for these 

qualitative changes is the repetition time 𝑇𝑝 namely if 𝑇𝑝  𝑡𝑖𝑛𝑡then the micromaser field evolution is towards a steady 

state equilibrium. In contrast when 𝑇𝑝 reduced to the order of 𝑡𝑖𝑛𝑡 then the micromaser field evolution is controlled by the 

trapping state dynamics – no steady state is apparent in this case.  

 

The first going-up trapping state at n=3 plays a significant role in the early dynamics of the micromaser field. Moreover 

the state of the field ultimately evolves towards a mixed state rather than a pure state. This is happened may be because 

of three reasons, the first is the presence of the cavity field damping which destroy completely the purity of the field[15], 

the second reason is that, when a trapping state is present in between a down trapping state and an upper trapping state 

then the situation becomes complicated [16] (and consequently no evolution towards a pure state). In our situation the 

presence of the first trapping state at n=3 in between the going-down trapping state at n=0 and the second trapping state 

at n=15 prevents the field from evolving towards a pure state, and the third reason is that, the presence of the black-body 
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radiation initially in the cavity destroys coherence induced in the micromaser field. These three unavoidable effects are 

responsible for destroying the purity of the micromaser field.  
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