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Abstract:-

We report a numerical simulation of the action of the one 544 atom micromaser which shows that the micromaser field
evolves towards a steady state equilibrium when the condition that 7,>> £, satisfies. In this steady state regime the
cavity field reaches a steady state after a sufficient number of atoms have passed through the cavity. The cavity
temperature T and the cavity quality factor Q can produce a quantitive change when one of them or the two are changed
but they are not responsible for the qualitative changes in the micromaser field. Evidently the only responsible parameter
for these qualitative changes is the repetition time 7, namely if 7,>> zx»then the micromaser field evolution is towards a
steady state equilibrium. In contrast when 7, reduced to the order of z.then the micromaser field evolution is controlled
by the trapping state dynamics — no steady state is apparent in this case. The first going-up trapping state at n=3 plays a
significant role in the early dynamics of the micromaser field. Moreover the state of the field ultimately evolves towards
a mixed state rather than a pure state.
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INTRODUCTION

The quantum theory of the micromaser was first developed by Mystre et. al.[1]. This theory is a direct application of the
quantum theory of the laser to a problem of two level Rydberg atoms interacting with a single mode radiation field in a
microwave cavity [2-8]. In most studies of theone photon micromaser theorythe injection of atomsassumes to have
Poisson distribution and all atoms always entered the cavity in their excited (upper) states. This device, the micromaser,
exhibits highly non-classical features such as a sub-Poisson statistics for the field, quantum revivals and trapping states.
The most of these features are experimentally realized [9-11]. In this work we assume that the atoms are pumped into the
cavity in a coherent superposition of their upper and lower atomic states and the cavity is at finite temperature T. Our
concern is about the effects of the black body radiation in the cavity (initial thermal field) and the effects of the damping
rate on the evolution of the micromaser cavity field coupled to a heat bath at temperature T. for the measurement of the
EPH - International Journal of Applied Science | ISSN: 2208-2182 urity of the state reached by the cavity field we employ
the entropy S = Tr p In p. This work organized as follows: in section2 the model and the calculations of the equations of
motion are introduced whilein section 3 the solution to the equations of motion is introduced. The numerical results and
their discussions are given in the fourth section and at the last section the conclusion is given.

The Model

The micromaser consists of two level Rydberg atomic beam (i.e8°Rb atoms) pumped into a high-Q microwave cavity
containing a single mode radiation field such that only one atom at any given time is present inside the cavity and the
atom flies through the cavity in a very short time compared to the time between any two successive atoms in the atomic
beam. It has been assumed that no coupling between the single mode and the heat bath during the interaction time tin: SO
when the atom is inside the cavity the problem is well described by the Jaynes- Cummings Hamiltonian (J-C) [12] only
and when the atom exits the cavity the coupling between the heat bath and the single mode is switched on.

In this work a different approach to this problem is introduced. in general at any point in time of the motion we solve for
the total density operator p for the atom plus the field, that is, the coupling between the cavity field and the heat bath is
switched on throughout the whole motion and not only when the cavity is empty of atoms. The damping process is
governed by the master equation of the damped harmonic oscillator given by equation [13]

Lp(t) = —k(ngy, + D]atap + pata + apa'] — kng[aatp + paa® + apat] (1)

(1) We illustrate the case when atoms enter the cavity in a coherent superposition state.
We use the J-C model as a fundamental model where the total Hamiltonian of the system (atom + field) is given by [12]
H = hwata + hwooz + hig(a’o-+ ass) (2)

For the case of the single cavity mode is coupled to the heat bath at temperature T>0, and the atom is coupled to this bath
only via this cavity mode, the total density operator p for atom plus field satisfies the master equation for the high Q-
cavity which is given by

p(t) = —i[H, p] = k(nu + 1)[a’ap(t) - 2 ap(t)a’+ p(t)a’al — knulaa’ p(t) - 2a’p(t)a + p(t)aa’] (3)

Where H is the J-C Hamiltonian eqn.(2) when and only when there is a single atomin the cavity. On the other hand when
there is no atom in the cavity the above differential equation becomes:
p(t) = =i[Ho, p] = k(nu+ 1)[a’ap(t) = 2 ap(t)a’ + p(t)a‘a] — knulaa® p(t) 2a’p(t)a + p(t)aa’l  (4)

1
WhereHo = hwa'a is the Hamiltonian of the cavity field, = 2 w@Q 1 is the cavity damping constant with Q is the cavity
quality factor. The cavity damping time is T = (2k)™*

Since the two —level atom is in a coherent stat i.e.

Y >= ale>+p|g > (5)

with |a|2 + |2 =1

Since the coupling between the atom with upper state |e > and lower state |g >and the single mode radiation field is
present during the motion the space is spanned by states |g > |0 >, |le>n>,|g > |n + 1 > for n=0,1,2,..... here [0> is a
vacuum state. In this case we should solve for the four coupled elements:pe,n;e,m, pgn+l;g,m+l, pen;,gm+l,
pgntlem

The differential equations for these coupled elements can be written in matrix form as:
l,b. (k)(n, t) = ATk)(n)l/)(k)(n’ t) + B(k)(n)lp(k)(n + 11 t) + C(k)(n)l/)(k)(n — 11 t) (6)

In which the ®=1)(n, m) and k = m — n represents the degree of off-diagonality
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The 4-column vectors y®(n, t) are

Pen-1:em-1(t)

: Pgn:gm (€)
(k) nt) = gn.g (7
PEGD) Pen-1:g.m 3] )
Pg.niem-1 ()
And the 4% 4 matrices A% (n), B® (), c®(n) are
AR ) =Amm) =
E,n+m+1) 0 igvm —igVn
0 E(n+m+1) —igVn igvm ®
igvm —ig\n iA+ F,(n+m) 0
—ig\vn igvm 0 A+ E,(n+m)
B¥(n) = B(n,m) =
Fp(n,m) 0 0 0
0 Fn+1,m+1) 0 0 )
0 0 F(n,m+1) 0
0 0 0 Fp(n+1,m)
c®(n) = C(n,m) =
Fn—1m-1) 0 0 0
0 Fy(n,m) 0 0 (10)
0 0 Fp(n—1,m) 0
0 0 0 Fy(n,m —1)
With,
En+m)=-2rnu[(n+m)+n+m-—1)]
Fy(n,m) = 2 k(ny, + 1vnm (11)

F.(n,m) = 2 kngn/nm

Exact Solution:

Now we solve the equations of motion of the density matrix p which are expressed in the matrix form eqn.(6).

First of all we assume that all atoms are prepared in the coherent superposition of their upper and lower states namely
Patom = W} >< ¢|

Patom = Ia|2pe,e + ﬂr“ﬁpg,e + aﬁgpe.g + |ﬁ|2pg,g (12)
Where eqn.(5) has been used
The single mode cavity radiation field is initially in a diagonal thermal state (nt4)" pn,m = én,m (.
(13) Where ny;, is the thermal photons inside the cavity.
For n=0, m=0 from eqn.(7) we put

nth+1)n+1

0
Pelo, ) = (ﬂg_u;%c (t) (14}
0
At t=0 and for (n=0, m=0)
; 0
. 2 L
@00 =| ¥ emm | as)
0
0
And for (n=0 | m=0),
a|? Lol
(nep+1)"
YE(m,0) = | |52 — el 16

(Mer #2772
0
0

In order to solve eq. (6) with the initial conditions eqns. (12-16) we take the Laplace transformation
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A n, z) of P (n, t) namely
P9 (n.z) = [ exp(—zt) ¥ (n.)dt (17)
From eq. (6) this transformation gives the following three-term matrix recurrence relations,
AR () + BEm™n+1,2)+ C¥md™®n-1,2) = —w™®(n0) (18)

Where A® (n) = A% (n) — zI, (I is an identitymatrix)

Apparently this equation (18) is a three-term matrix recurrence relation in terms of n and since it is also a three-
term matrix recurrence relations in terms of m it is sufficient to work with labels n only for fixed k (n and n+k)
Following Risken [14] these three-term matrix recurrence relations eqns.(18) have solutions expressible in terms of matrix
continued fractions. To get the solution one can truncate these equations at the (Nth, Mth) term. Thus

T (n) =0, vn >N, and m=M (19)
By inserting the ansatz
P ) =5t m - 120" -1+ a®(nz)forn=0 and for k=-n (20)
in the eqn.(18) yields
AR M[SHE (- DP¥ (n — 1) + @™ (n)] + B¥ () [S*™ ()™ (n) + @ (n + 1)]
+ CROMBE R (- 209%n-2) + a®(n - 1))

=—9p*(n,0) (21)
i =2 r-. 3] _ —
It should be understood that the functions 5+, %, and */4re 7-dependent.
Now we make truncation to these equations at suitable values of N and M and then by downward iteration we get,
1- For w=N=+7 and'or F=M-N=]

P¥m)y=0
gkl (n) = _§+(kil|:n — -]_:}?ij_?c} (n—1) (22)

2- For n=N and/'or k=M-N

§+E(n = 1) = (—A® (m)) € (m)

2t (n) = (—A® (n))"$® (. 0) (23)
- Foolbl=n=N-2andoal=k=M-N-2
S*Em) = [-A%n+ 1) - B¥n+ 5" m+ 0] C®m+1) 29

4- For0=n=N—-1 andor0 =k =M -N—-1

a®(n) = [~A® () = BRM)SE )] P (n,0)+BF (m)a® (n + 1] 25)

The solution when the cavity is empty of atoms can be obtained by employing the master equation of the damped harmonic
oscillator in the rotating frame that is [13]
6(t) = —x(ner + Dlatap(t) — 2ap(t)a’ + p(t)a’al — knenlaa’ p(t) —
2atp(t)la + p(t)aal] (26)
where the density matrix p is for the micromaser cavity field only. In photon number basis the density matrix elements
of this equation are,

6. 6) = 2k(nen + D [+ D+ k + Dp@n+ 1.0 + (n+3) p@(n.1)] +

25N [.,,." min+ kg™ n-11¢ - (n +1+ ;) o® i (n, t)] 27n
The solution to this differential equation is given by [15]

» kW al a\" ey
p(k} (nl t) = exp(—xkt] E?:U Zj:ﬂ,—[' C‘;EJJ%;‘ E_;'+.F|:+1 (H) (E) p(k) (ﬂ., 0) {28]

where
= o () (G
A= (ng + 1(1 — exp(—2xt)) (30)
B =1+ n;(1 — exp(—2kt)) (31)
A" = exp(—2xt) — ny (1 — exp(—2xt)) (32)
B' = —n; (1 — exp(—2xt)) (33)

Therefore through these relations with suitable values of n and m and by iteration the function
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%) (n, z) is delivered and then by the inverse Laplace transformation ¥ ™’ (1n.1) js obtained. After obtaining all

Y t)'s (0=0.1.2.)\e calculate the reduced density matrix elements of the cavity field by tracing over the atomic
variables by using the relation
077 (0) = Traeomp™(n) (34)
The diagonal elements of the density matrix p(0)(n) can be used for the calculation of the following physical observables.
1- The average photon number of the micromaser field

< n>=Trinp®(n)) (33
2- The normalized variance in the photon number

(36)

3- The entropy of the micromaser field
5= —Tr[pln(p)]
5F=- E;:Dpﬂ‘: In Prn ':3 _)

This equation is for the case when p is diagonal that is when al=1 only When
a|? = 1 the density matrix becomes g, instead of g, namely
5= _En.m Dnm ln.|5'1:m (33}

Numerical results and Calculations

In these calculations the investigations will be for case when the atoms are in their upper states where '@l =1and 5] =0.
For @ =5x10%%, gty = 1.54, gT, =308 and T = 05K \jth regular inputs, the cavity field evolves towards a
steady state as in Fig.(1a). Initially the trapping state at

n=3 For gt;,, = = appears to play a significant rule because P, rises to P, = 0.69 for N=25 Fig.(le) but since gty,, < ; n=3

is not an exact trapping state. However it is n=13 and not n=15 (the 2ndtrapping state) which plays an important role
even for N=50 (P13=0.043). Similarly for N=150 (P13=0.15). Ultimately, the cavity field reaches a steady state and the
P13=0.322 is the largest Pnin a bell-shaped grouping in 11<n<16 centred about it as N=1000. The average photon number
<n> Fig.(1a) rises rapidly from black body value to nearly n=3 (the first trapping state), then jumps this state and
steadily increased towards the second trapping state n=15, and since gtint=1.54the field traps at n~13 (n=13.387 at
N=1000) for the reasons mentioned above.

The variance Fig. (1b) initially drops from black-body value to v=0.35 at N=7 then increases to its most maximum v=1.94
at N=98 where it starts decreasing towards a nearly steady value v=0.384 at N=1000 The entropy S Fig.(1c) shows that
the cavity field ultimately evolves towards a mixed state. Similarly the probability P|e> that the atom exits the cavity in
its upper state initially increases Fig. (1d) and becomes large compared with P|g> that is the probability of lower state,
then it decreases slowly and finally reaches a fixed value.

1.0 T 1 ! ! ! : : 14 L L 1

Figare (1) Phe varbnnce of the cavity feld an o fooction of the number of

y thie cose of regular inputs, the paramotons wee thowe of Fig.(a).  [the covity b mio = 0.15

1 I T 0 ()~

200 400 GO0 BOD NICOD 1200 1400 TeC

Figure (1d)  The atomic population difterence as o fanetion of the e
ol atons N, for the case of regular ipuats, the parnoteters ae those of Figla) Fignee |
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The effect of the cavity temperature T on the micromaser field is shown in Figures (2). For T=70mK with fixed parameters
as in Figures (1), the micromaser field evolves towards a steady state similar to the situation of Figs.(1), namely the
change in the micromaser field is a quantitative change and not a qualitative change when the temperature of the cavity
is reduced to this very low value and the other parameters are kept constant (fixed). The main difference between the
observations of Figs. (1) And Figs.(2) is that: a long time (large number of atoms) is needed before reaching a steady state
when the temperature of the cavity becomes very low. This is clear when we realize that the steady state is nearly
reached in Fig.(1) when approximately 103atoms have passed through the cavity, where as in Fig.(2), up to 2800 atoms,
the field is still in its way to a steady state and it does not reach it yet .

In addition to the effects of the temperature in this regime we also investigate (through figures3) the effects of the cavity

30 . L ! ! ! i ! I e
S
»-/‘_
12 / =
2.5 =
10+ [
2.0+ I
v a1
<n>
151 r o -
1.0 = 4 B
e | 27 B
0.5 =
R o o o o e e e
0 500 1000 N 1500 2000 2500
0.0 T L0 LS 1 L W
0 500 1000 N 1500 2000 2500

Fignre(2a)  The average photon number in the cavity field as a function of

the number of atoms N, for the case of regular inputs, |a] = 1, Q = 5x 10",
Figure(2h)  The variance of the cavity field as a function of the numberof . = 154, 47, = 308 and the initial average thermal photon number in
atoms N, for the case of regular inputs, the parameters are those of Fig.(a). the cavity is ny, = 107"
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Figute (2¢)  The entropy S as a function of the number of atoms N, for
Figure (2d)  The atomic population difference as a function of the number (e case of regular inputs, the parameters are those of Fig.(a).
of atoms N, for the case of regular inputs, the parameters are those of Fig.(a).

Figure(2e) The photon number distribution 72, vs 2 (the photon number)
and /N (the number of atoms) for the case of regular inputs, the parameters
are those of Fig.(a).

For the parameters of Fig.(2) but Q = 19 x 10%°, we plot in Figs.(3) the same observables as in Figs.(2). We find that the
average photon number <n > behaves initially similar to that of Fig.(1a) and Fig.(2a), but as N increases the photon
number evolves towards a steady state and traps at N=15 (Fig.(3a),Fig.(3e)) instead of N=13 as in the previous figures. It
is evident that the increase in Q value enhances the quantum character of the cavity field such as the sub-Poisson statistics
(Fig.3b), namely the quantum features become apparent more and more by increasing the cavity quality facto Q. Moreover
the purity of the cavity field is improved by increasing Q even though the evolution is still towards a mixed state as before.
The difference between P-and Pjg-is nearly fixed at large N (Fig.(3d)).
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Figure(3d) The atomic population difference as a function of the number

of atoms N, for the case of regular inputs, the parameters are those of Fig.(a).

Figure (3e)
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Figure( 3a)

the number of atoms N, for the case of regular inputs, |a| =1, @ = 19x 10'°,
308 and the initial average thermal photon number in
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The average photon number in the cavity field as a function of
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Figure(3c)
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The entropy S as a function of the number of atoms N, for

the case of regular inputs, the parameters are those of Fig.(a).

The photon number distribution P, vs n (the photon number)

and N (the number of atoms) for the case of regular inputs, the parameters

are those of Fig.(a).

To achieve a qualitative change in the micromaser we plot in Fig.(4) the same quantities of Fig.(1) but with gtme= gT»
= 1.54 and the other parameters are fixed. Even for this high temperature T and for this large value of Q no steady state
in the variance v is apparent for this range of N. Moreover, the dynamics of the cavity field, for this set of parameters, can
be described as non-steady trapping state dynamics [ ] where Ps, P16, P3s(Fig.4€) play a significant role in this dynamics.
In this situation the average photon number Fig.(4a) continues its increase after passing both, the first trapping state N=3
and the second trapping state N=15. The variance vFig.(4b) falls from black-body value to v=0.249 at N=12 and rises to
its maximum v=2.78 at N=358, beginning a slow decrease afterwards. The measure of the state purity S is shown in
Fig.(4c).For this range of N, the number of atoms, the cavity field is still evolving towards a mixed state S>0 (and still

increasing) rather than a pure state (an evolution towards pure state occurs at 4 < N < 19 however).
The probability Ppsis still larger than Pjg-at higher N's (Fig.(4d)).
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Figure (4a)  The average photon number in the cavity field as a function of
the nunber of atoms N, for the case of regular inputs, |a| =1, Q = 5 x 10",
gt = 1.54, ¢T, = 1.54 and the initial average thermal photon number in
the cavity is ny, = 0.15.
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Figure(4d)  The atomic population difference as a function of the number Figure (4¢)  The entropy S as a function of the number of atoms N, for

of atoms V', for the case of regular inputs, the parameters are those of Fig.(a). the case of regular inputs, the parameters are those of Fig.(a).
o n

N 0 10

Figure(4e) The photon number distribution P,, vs n (the photon number)
and N (the number of atoms) for the case of regular inputs, the parameters
are those of Fig.(a).

To investigate the effects of the reduction of the cavity temperature T in this regime, we plot in figures 5 the same
quantities for T=70mK and the other parameters are kept constant as in figures 4. From all the figures it is apparent that
the reduction of the cavity temperature has no clear effect on the behaviour of the cavity field in the "trapping state

dynamics" regime. Therefore, when the trapping states are effective (trapping state dynamics) the micromaser field
becomes insensitive to the changes in T and Q.
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atoms IV, for the case of regular inputs, the parameters are those of Fig.(a). the cavity is ny, = 1077
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igure (5d)  The atomic population difference as a function of the number : .
f cuxe (51) ‘ POk ° the case of regular inputs, the parameters are those of Fig.(a).

of atoms N, for the case of regular inputs, the parameters are those of Fig.(a).

S0

Figure (5€) The photon number distribution P, vs n (the photon number)
and N (the number of atoms) for the case of regular inputs, the parameters
are those of Fig.(a).

CONCLUSION

We report a numerical simulation of the action of the one®*Rb atom micromaser which shows that the micromaser field
evolves towards a steady state equilibrium when the condition that T >> tin: satisfies. In this steady state regime the cavity
field reaches a steady state after a sufficient number of atoms have passed through the cavity. The cavity temperature T
and the cavity quality factor Q can produce a quantitive change when one of them or the two are changed but they are not
responsible for the qualitative changes in the micromaser field. Evidently the only responsible parameter for these
qualitative changes is the repetition time T, namely if T, >> tincthen the micromaser field evolution is towards a steady
state equilibrium. In contrast when T, reduced to the order of ti: then the micromaser field evolution is controlled by the
trapping state dynamics — no steady state is apparent in this case.

The first going-up trapping state at n=3 plays a significant role in the early dynamics of the micromaser field. Moreover
the state of the field ultimately evolves towards a mixed state rather than a pure state. This is happened may be because
of three reasons, the first is the presence of the cavity field damping which destroy completely the purity of the field[15],
the second reason is that, when a trapping state is present in between a down trapping state and an upper trapping state
then the situation becomes complicated [16] (and consequently no evolution towards a pure state). In our situation the
presence of the first trapping state at n=3 in between the going-down trapping state at n=0 and the second trapping state
at n=15 prevents the field from evolving towards a pure state, and the third reason is that, the presence of the black-body
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radiation initially in the cavity destroys coherence induced in the micromaser field. These three unavoidable effects are
responsible for destroying the purity of the micromaser field.
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