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Abstract:-

This work is about studying biological system interactions which founded in two types. Also it is one of modeling topics
that based on the use of non-linear ordinary differential equations. Consequently, the mutual affect between the interactive
groups is estimated. In addition the elements of the same group to chronological correlation functions are of second order
form. Therefore, the reflection of mutual affects is due to the existence of the set of solutions. First we choose a simple
model of single species of biological system, where we can get the solutions of the governing equations. And then calculate
the correlation functions related to the solutions. After that we study the evolution of the lotka-volterra interacting model,
then we get the solutions of nonlinear system by approximated method, and evaluate the correlation functions.
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INTRODUCTION

As Kapur [3] says in winding and deepening the scope of mathematical biosciences, we are not first restricted to the use
of mathematical techniques already known. In fact, one role of mathematicians interested in biological and medical
problems is to evolve new mathematical methods for dealing with the complex situations. Kapur [4] analyzed the stability
of continuous and discrete population models, in his work, he examined the stability of models for interacting species
with same points of equilibrium, using difference equation system. In [5, 6 ] it were studied moments for some general
birth death processes, determined the moments of all orders for the probability distribution of ultimate size of the
population the generalized birth and death processes with twin birthsusingthe difference equation technique.It had
been shown in [7] that equilibrium point for predator-prey models with discrete time lage is always unstable.The
use of hypergeometric functions to generalized Birth and death processes is given by Kapur in [8] he enumerates
the number of possible relations between probabilitiesof ultimate extinction of birth and death processes.In another paper
[9] titled some mathematical models for population growth, itdecided one of the most successful models for
explainingthe growth of populations of bacteria and even of humans is the so-called Logistic model all orders for the
probability distribution of ultimate size of the population the generalized birth and death processes with twin births using
the difference equation technique. It had been shown in [7] that equilibrium point for predator-prey models with discrete
time lage is always unstable. The use of hypergeometric functions to generalized Birth and death processes is given by
Kapur in [8] he enumerates the number of possible relations between probabilities of ultimate extinction of birth and death
processes. In another paper [9] titled some mathematical models for population growth, it decided one of the most
successful models for explaining the growth of populations of bacteria and even of humans is the so-called Logistic model.

The combined use of game theory and modified volterra equations in describing the population dynamics is treated by
Kapur [10] he concluded that volterr’s system of differential equations for n interacting species has been modified and it
is shown that the modified system is equivalent to the system of cubic differential equations obtained earlier for animal
conflicts from considerations of theory of games. In his study of nonlinear continuous- time discrete- age- scale population
models, he showed that whenever the corresponding linear model predicts exponential growth, the nonlinear model gives
a stable equilibrium age-distribution [11]. The study of the effect of harvesting on competing population. he showed that
for the simplest competition model for two species there are four nondegenerate possibilities for ultimate behavior
according as (i) the first species alone survives, (ii) the second species alone survives, (iii) the two species coexist, in
stable equilibrium and (iv) the two species coexist in unstable equilibrium, and the survival of first or second species
depends on the initial population size [12].

The optimal foraging and predator-prey dynamics by Vlastmil K-Rivan in [13] is treated for a system consisting of
population of predators and two types of prey. The dynamics is described by differential equations with controls the choice
of these controls is based on the standard assumption in the theory of optimal foraging which requires that each predator
maximizes the net rate of energy intake during foraging. The proposed a model to describe the interaction between a
diseased fish population and their predators he analyzed the stability of equilibrium points for a large range of parameter
values, it established the existence and uniqueness of solutions and found that the solutions are uniformly bounded for all
non-negative initial conditions [14]. In model which is proposed by chattopadhyay and Bairagi predicts that a deadly
disease and predator population cannot co-exist [14]. In [15] manipulated the spatial dynamics and crosscorrelation in a
transient predator-prey system. It was found that during the exponential population growth, beetles were generally strongly
negatively cross-correlated with the prey at local spatial scales. It simulates the partiallyextended interactions in predator-
prey coupled map lattice model and used this model in investigating the effects of global and local prey reproduction, in
the presence and absence of global stochasticity, on predator and prey spatial structuring and crosscorrelation.

The effects of correlated interactions in a biological convolution model with individual-based dynamics is a research given
by [16]. In his study it recognized, models of biological convolution in which a species is defined by a genome in the form
of a finite bitstring, and the interaction between species i and j are given by a fiseed matrix with independent, randomly
distributed elements Mj;. This means that species whose genotypes. Differ even by a single bit may have completely
different phenotypes, as defined by their interactions with the other species. [17] Introduces the concept of coherence into
the predation of biological system through his work titled on the influence of noise on the critical and oscillatory behavior
of a predatorprey models: coherent stochastic resonance at the proper frequency of the system. In [18] introduces
variational iteration method for solving multispecies lotka-volterra equations. And [19] studied a modified algorithm for
approximate solutions of lotkavolterra systems. While [20] has proposed utility functions and lotka-volterra model: A
possible connection in predator-prey game. Susmita paul [21] introduces numerical solution of lotka-volterra prey predator
model by using runge-kutta fehlberg method and laplace a domain decomposition method. Yigit Aksoy in [22] he
discussed application of perturbation-iteration method to lotka-volterra equations. Noura taher in [23] studied analysis of
hybrid dynamical systems with an application in biological systems.

This paper is about studying biological system interactions which founded in two types. First we choose a simple model
of single species of biological system, where we can get the solutions of the governing equations. And then calculate the
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Increases to
The final

where we assume for the present that: X = &, / b, .
however, x >

correlation functions related to the solutions. After that we study the evolution of the lotka-volterra interacting model,
then we get the solutions of non-linear system by approximated method, and evaluate the correlation functions.

LOGISTIC MODELS
The logistic models are based on a Logistic equation defined as follows:
Let x (2) be the population at time #; b and d be the intrinsic or specific birth and death rates, respectively. This leads to

Malthus model (1798) [3]:
(2.1)

dx/dt =bx—dx=(b—d)x =ax.

when b , d and a are constants, by integration we get:

cis ar
Hed=x(0)e (22) 5o that the population  grows

exponentially if a >0, decays exponentially if a <0, and remains constant if a=0. In general, b is a monotonic decreasing
function of x and d is a monotonic increasing function of x so that a is a monotonic decreasing function of x.

hence we write: @X / df = xlb(x) = d(x)J = xa(x). (2.3)

B(x) <0, d(x) > 0.

The simplest case arises when
c=b,+d,,

b(x)=b,-b,x . d(x)=d,+d.x, a(x)=a—cx, a=b,-d,,

b.b,.d,.ds.a,c >0, (2.4)

(2.5)

> bi/ by . the birth rate is taken as zero. from (2.3) and (2.4), we get Logistic model

Qf =x{a-ex) (2.6)

Integrating (2.6) we obtain

. alc
x(t) = F— = (2.7)
alc s
1+ 22 -1
\.x(o) Z
so that, as I — ¢, x(7) >a/c . If x(0)< a/c , then d/dt is always positive and x(%) a limiting population
. ; 8 PR e - 1 v/f) = 7 S0 . .
size a/c. Ex(0)> a/c , then dx/dr is always negativeand x(7) decreases to a/c ( see Fig. 2.1). population size
in any case is a/c, and since
a b —d b
e’ 1] L g (2.8)

: e s S
when x(0)< a/c, condition (2.5 is always satisfied and birth rate always remains positive, Thus we shall assume that

x(0)<alc.

Xo

ajc

x(1)

af(2c)

Xo

¢

Fig. 2.1Logistic curve

| (2.9)

Differentiating (2.6), we obtain:
J ./

=a-2cx = 2¢| i—.\ L

{ 2 |

d’x
dar’ _ /

If x/0)<a/(2c) . then dx/dt increases as x varies from x/0) to a@/(2c) and decreases as x varies from a/(2¢) to a'c . dv/dt

at x =a/(2c), and d°x/dt* vanishes when x = a/(2c) 5o that

Changes from an increasing to a decreasing function
there is a point of inflection in the population growth curve when half the final population size is reached. From (2.7), the

point of inflection occurs at time:
; 5\

- Llufere )L

a| \x(0 )

If x (0)> a/ (2¢), there is no point of inflection.

(2.10)
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Generalized Logistic Models

This model is a member of class of models which gives sigmoid growth cure with a limiting population size and a point
of inflection. In model:

g xa(x) ,a(x) <0 (2.1.9)
dr
afx) 1s any positive monotonic decreasing function of x. If afx) vanishes at x = £, then gives limiting size of the population)
d’x 3 ;
Since: s = @¢(x) = xa(X) + a(x). (2.1.2)
dr
a(x) vanishes atx = ¥, and a(x) is always negative, we have:
(k) =kak) <0 (2.1.3)
so that, at x = & dx/dt is zero, &Fx/dt’ is negative, and x attains its maximum value, also
Plxy )= xpa(xy) +a(xy). xo=x(0) (2.1.4)

If ¢{x,)> 0, then @{x ) will,
n general, be a continuous function which is positive at xo and negative at k and, therefore, it

S (2.1.5)
xa(x,)+a(x,) =0. will at vanish
Thus, when aix) is a positive monotonic decreasing function of x, (2.3) gives a
a limiting size k and a point of inflection at ki< kif (2.1.5) is satisfied and: — some pont
a(k)=0, ka(k,)+alk)=0. % <k between X

and, k. Hence a necessary condition for the existence of a point of inflection is that. Generalized logistic model with

Another generalization of the logistic model of some interest is given by:

dx a (X (2.1.7)

L ) T

df o k)

when o =1, (2.1.7) reduces to the logistic model ; when o — 0. 1t gives:
2 2.1.8
L achn K : ( )
dt X
) (2.1.9)

or dv/di=alhk-y). yv=hx

so that In x satisfies a linear differential equation. Integrating (2.1.8) or (2.1.9), we obtain the Gompertz growth law

X =x, exp| (In %)(1 —-e™) | (2.1.10)
L 0

Evolution Equations and Solutions of the Generalized Logistic Model
In the generalized logistic model we have:

22 2y l—fll x| _ o is a real number (2.2.1)
dt « k) |
Integrating equation (2.2.1) we have:
ka
x() = = (/ % — (2.2.2)
(x(0)*| 1+ - k —1le ®
U Lx@)
For ¢ =1 and k=2 we have the Pearl-Verhulst Logistic Model:
¢
dx . (2.2.3)
— = ax — cx*

S -

Correlation Functions we shall select the generalized logistic model to compute the pair-correlation function associated
with its solution, then
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a=lLz_2.
evaluate that function for Pearl-Verhulst model as a special case when ¢ For
the generalized logistic model from equation (2.2.2) we have:
. { -=r)
ok® l+ce = a
) = In - +— 3.
(x(2)) a(x(O))"""T[ | T+4 | aT] (2.3.1)
and: s Ay gl itaem | GO 4 2i33)
a(x(0)*“7'T "a L l+c, ) e )Xl+ce™

From equations (2.3.1), (2.3.2) and by definition in [1, 2] we can calculate G (@

Iterative Solution of Lotka-Volterra Model for Two Specie Systems In
Lotka-Volterra model the basic equations can be written as:

o X -
4 a,N, -4 NN, ., a,.0, >0.
dr (3.1)
d\' =-&-\.\' -J-C(ﬁ.\ \1 a..o, =0
e}

(3.2)

Let Ny@O=Ny+&m() ad N, (@) =Ny +&,7,00).

Substituting (3.2) into (3.1) then neglect the terms containing powers of [ greater than or equal to 2 we have

dn,
—L = Bn.()+yn. (D) + e,
2t B, @)+ yn.() (3.3)
d"’ = B, + 7-n.() + @-.
at

s \\' : I v

Where: 5 =a —egNy. 7 =u: @ =a_.\_,_&: 5. =’a_:ii
e & &

= T (.
-/". =—a: :.a_‘\.u + @ =u_‘

[

In matrix form equation (3.3) take the form

,’l (/j’ I ) ) ']l ] / (ol )
a9 (3.4)
We shall solve the equatlon

dt!

I‘ m+0) |_ A!, m+ < \| (3.5)

I +Q, \7h +92, )

(B n)
=| 2 T lan

v
72

where:

Assuming that:
(77 + 2)(2) — =™ (3.5a)
Leads to the set of linear algebraic equations:

4 ’ N/ N\
(B—2 1n Yé&u)
|'B-ﬁ - \ ‘u |=o (3.6)

- AN\ &)
Which determine the eigenvalues and eigenvector of A
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Now the eigen values of 4 are given by: IA — AT | =0 (3.7)

(3.8)

3.8a
Where:b=8,+y, and c¢=B7,—-B.7, ( )

The roots are:

,

b= 2_4c (3.8b)

Ay o=

% 2

For 5> = 4¢c == A, A, are real number,

For: 52 =ide =, =Ai=— % are equal real number,

For 5% < 4c = A A, = /_?.; are complex number.
Case(1):If 5° > 4cweobtain A, — A,, and A =4, (3.9)

b++b° —4c . b= -4c

Where: /‘:,; S and 4, = 3

Form (3.8Db) into (3.6) can be obtain the eigenvectors
7 N\
7 1 ~ > f 1 \
| l and &' =i i (3.9a)
\a. ) \a,; )

e '

Where: g, = =Bi=A) g a..

Substituting Form (3.9a) into (3.5a) we have:

(n+Q)"@®= | al |e"‘ ‘and (p+OQ)V @ = (al (3.9b)

-~
je;-(l
Nt - o \ 22

The general solution of the equ'fttion (3.5) are:

m(t)=ce”" +ce™ — Q.

(3.9¢)

’]2 (1’) ] C:alze/mr -+ C:a::e/" f - Q: -

Form (3.9¢) into (3.2) we have:
N, (@) =de”* +d.e™" +d;,

. . (3.10)
N2 (t) = .Dle/.”z +D2€A:"z +D3.

]

©
i)
o

Where:  d) =¢,8,.d,=¢,&,d;=Nyy—§Q. D =ca.2.. D,
Case 2):If 5° = 4¢c weobtain: A, = A, = 4,

whnere: 7413 >

(3.11)

Form (3.11) into (3.6) can be obtain the eigenvectors
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£0 @ =( 1 J

(3.11a)
413
Where: a;; = M

71
Substituting Form (3.11a) into (3.5a) we have
N

(n+)f@ =
\_a13 J

(n+) @ = [|/a1 \|r - (a“ﬂe"‘ .

3/ \aaa

i

P

(3.11b)

:"_";'1 = QY
Where: @, =

"B X1 A -1.Bs

and Q=M

@)= cl'e;“" of czz‘e”.'"’ —-Q,, 516
17,(f) = Cle™™ + c,ate™ —Q,.
Where: ¢, =¢, +¢,a,;, and C|=ca,+c.a,,.

Form (3.11c) into (3.2) we have:
N(t)=de" " +d,e"" +d;.
1 ( ) 1 - C (3.12)
Ny (2) = D™ + Dyyte™ + D;.
Where: d; = €,&,, D,, = C{&, and D,, =c,a,;5,.

Where: 2.; = b 2
- 2

Form (3.13) into (3.6) can be obtain the eigenvectors:
~ 1 N\ 'd 1 )
and 8- 2) = |

\a,; —ib,,) \a,. +ib,, )

(3.13a)

,V] - :./1
Substituting Form (3.13a) into (3.5a) we have
( ) S G
(= Q\](I) )= A rids, -
7 +Q)7 (@) ‘\al.- 224 ib“/}e .

- B+ A A
0 =* 1 13 s 23
‘r\"hefe. az_; - =b14

(3.13b)
'd 1 \|

A=Ay
e

(m+Q)¥@®=

\_al-' o ib]-l /
The general solution of the equation (3.5) are:
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1, (t) = ¢, cosAyste™” +¢, s Ayte™ — Q)
(3.13¢)

(1) = (qas — &by ) cos dpste™ +(6bs + cras) sin Aygte™ — Q) ‘Into (3.2) we have:
N, () = d, cos A, te™* +d, sin A, te™" +d,, _—
3.14

N,(£) = D3 cosAyste™ " + Dy sin Ayste™ + D,
Where: D13 = (C1a14 - C:bu)g: and DIS = (Cle _CIaU)EZ'
iteratively considering Nz, Naien rom three casesasa 1l ' approximation

We can treat (tll)le nonlinear problem
WNE @, N (t))then the 2nd iterative solution can be obtained from

N 1 .y
B a NP —a, NOND,
y (3.15)
L0 = —a:Ng‘-?' + s .\.’1('.}_\7;1';-_

Form equations (3.10) or (3.12) or (3.14) iato (3.15) and integration (V;7'(z), NZ(@).
Similarly can be obtained the 3rd approximation ()™ (£), N37(2)).

Second-Order Correlation Functions
To evaluate the pair correlation function between -\_“'/’) and Naf) we need (N, (£)). (N.()and (N, (ON. (@)
using equation in [1.2] since Vi) and NifD) are given i Gec 3 we shall evaluate each expectation value of £{z)
In case (1):From equation (3.10) we have:

. 1 ir AT
(N.(D)=x, + ?[x_,e" T +xe™ —-x,] (4.1)

where:x, =d.. x, =‘_i—, X, =d— andxe = x; + x5
4 2
2 1 i e
(N.@) =¥, +?[}‘_-€‘ " e =yi] (4.2)
s = l_)_ and ys =y = yz

where: y, =D, . x. = —, x,
) A
2..T

(["\?1 (t)]2> =X+ —;_—[x:le"‘ T 4 xlse"" T 4 X,4€
(4.3)
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24T (A =420T S
X, 5€ + X, 6€ X1

2dd,
1

- S A

_dd & &

14

where: x,, =d;, x,, =

s Xys
27,

=Xt Xy T X X5 T Xis.
N,(OP) = ¥y, + =[ye™T + y.e*7 + 3027 +
2 H11 pireaid #13 14

(A +200T

22,,T L (A, -
+ V€ -]

) } ;'sl |
y = 2DD: o
e (/: [ +;-|_~) and Yy =¥ T Yiz T Ve TY1: T Vs -

(N (0).N,(2)y =E, +'21:[E:ei"r +Eye™T + Eyo %l 4

Ese2/'.,,T +E622;'“T —-E‘,']
d.D,+d.D

)

g _&D.+dD.

where: E, =d.D,, E.= 7
“12
a.D,

Dy i 4D
2’/”11

. =
24,

B

andE- =E; ':‘E,' +=E, —Es+£g.
In case (2): From equation (3.12) we have

(N{(@)y =1z, +—71:[zze"' T + z3Te™T —z,]

d. d.
/il: /:":v ‘

where: W, =D, , W) =—=——= and W, =——
A

o 1 AT
M @] ;‘=zu’?[2::€ I8

2d}d; _2d.d;

AT T 2z,.T 2 24,
+414T9 +415Te +‘16T e —Z37).

(4.5)

_dD,+d.D,

A=A

1

(4.6)

(4.7)

where: z,, =d:, z,,={( ; z ( —
1 =243 12 > PR 13
213 Ais 24,3 245,
_2d.d, did. & :

Z14 = s Zys = (= -——_:—)=216=2_

;'13 /vlg 2/;./:3 ;.13

- 2 1 > T 3.7 3 - 217 2 2
IV, D) =wy,;, + -~ [w,e™" +w e w, Te™" +w, Te-"" +w T e

2D,D, 2D,D,

D} DD

T —w-] (4.9)

D3
5

X W =(
D:,

5 :
L7493

=(———

A A,
D:

BEVEN
2413

where:  w,, =D;, W,

27,
2D.D D,.D.,
2 3 . Wis ( 12~"22

“3 Az

Wiy = ). Wyg =

(NN, (@) = 25, + —=[2020™ T +z33&**T +2,,Te* 7T +

where Z, =F,2p=(G"——F :3=(-,- ~ ke 1
Ay Ais 245 44 44,
F; F s
2y e 2:s=(2_.—'2;: ). Fag = — and zz7=2z22 +z22
3 A3 ‘3 <Az

Since:F, =d.D,. F, =dD, +d.D,.. F, =d/D,,, F, =d.D, +d.D..,

In case (3): From equation (3.14) we have:

22
2A7:

47,

and wir=wi2 + wis.

(4.10)



1 . . X
(N (D)) =P + 3 [P, cos Ax3Te™ T + Py sin ApTe™ T —R]. (4.11)

di,+d, A, d i, +d,A;
where: B =d,, P =—"12—3 g P =23 203

/-"lli + )-:‘.1 : /‘.-‘-; +;.::;
NL@)) =0, +=|U, cOsA,; e™ + U SIN - e -, .
N, (@) =0, ; Q, cos iy Te™ T +Q;sin 2,,Te" T —Q, (4.12)

D'- ;—D--; :n; Dx;s\\,+D\;;v:
where: O, =D,. 0, =# md @y =——F——.
Ay + A3, A+ A4,

IV,@F)=F + % [P.e™™ + P cosi, Je'™" + P, sin 2, Te"" +

B cos22,,Te**™ + B, sm A, T e**™ —B.] (4.13)

B, P — P, P.A;+PA
' : 12 ' 13413 — 3t o 13%23 T 5445
where: P\ =B, By =—. By =——— 2 v Dy FERE
2/ Ay + A3 Az + As;
Pl P2y3 — Pglas P BsZq5 + Piglas 5 S B
15 = 23 =3 3 E16 3 3 and P"=P.:"P J'P::.
2(45;5 + 435) 20455+ A33)

2+ d? d?-d:?
Since: R=di, P.=2 2d:’ P =2dd,, P, =2dyd;. P.=———

= —=——= and
P.=dd,.

.:[.\r' (1)11:7' o Q'vl +%[Q;:e:.£ T +Q;_~. cosi.:_.‘]'e:;“’ +Q|'_~ sin /“_:,Te‘i T +

05 c0s225;Te™ ™ + Qs sin 24,72 e** 7 — Q-] (4.14)

: On o _ QA — QA
where: 0, =0,,. Of, =oid Qu L 13’?'13 Ql.; 33

2713 iz + 73;

Q.. A.. +0Q.. 2 O, Aoy — Oy Ay Q.. sz + O, A
Qll’4=~13 23 T M4 ~13=Q;5=~._ 13 TX6%s o Hisfas T 16/

2 22 2 22 = X6 T 22, 22
g+ Aas 2( A + 733) 2(A + A33)
and O, =0 +0:+0s

5 ¢ 2 . Dz -’-.D\2 " .
smce: On=D;. Q.= %: Qi;=2D;;D;, Oy =2DyD;,

D} - Dj; i

O’( =
=153 2

Qz's = D:sDzs-
(N, @ON.@) =1, + -} [L.e*" + 1, cos i, Te*" +1,sin 2. Te"" +

(4.15)
I, cos2ATe " +I sin2Te ™" —1,.]

where: I, =H,.I, =:{L,I= = H:f:; H don A, = H‘ZE:*-H‘}.“,

24, Az + A5 A+ A

; Hoy=Hiy , Hiy,+HA,

2+ T 2+ A

and =L+

since: H,=d,D, H,=2Pu*dDys g _4p sdD, H,=dD +dD,

,-d.D,, dD. +d.D,
4Dy =dDy oy gy 4D +d:Dy

-

&

H.

From definition in [1, 2] we can calculation G @) for Nt , Nx(0) and calculation @ for NOF . (N and Ni(t) Nift).
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CONCLUSIONS

This paper is devoted for studying a simple model of single species of biological system, where we can get the solutions
of the governing equations. And then calculate the correlation functions related to the solutions. After that we studied the
evolution of the lotka-volterra interacting model, then we got the solutions of non-linear system by approximated method,
and evaluate the correlation functions.
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