SEMIGROUPS IN TERMS OF INTUITIONISTIC FUZZY BI-IDEALS

*1Mathematics Department, Science Faculty, Omar Al-Mukhtar University, Al-guba-Libya
2Mathematics Department, Education Faculty, Tripoli University, Janzour
3Mathematics Department, Science Faculty, Al-Zawia University, Al-Zawia

*Corresponding author:-
E-mail:- Kholoudwaleed83@gmail.com

Abstract:
Since Zadeh introduced fuzzy sets in 1965, a lot of new theories treating imprecision and uncertainty have been introduced. Some of these theories are extensions of fuzzy set theory. The concept of 'intuitionistic fuzzy set' (IFS) was introduced by Atanassov as a generalization of the concept fuzzy set by gives both a degree of membership and the degree of non-membership. As for fuzzy sets, the degree of membership is a real number between 0 and 1. This is also the case for the degree of non-membership, and further the sum of these two degrees is not greater than 1. Since fuzzy bi-ideal play an important role in the study of smigroup structures. The purpose of this paper is to initiate and study the intuitionistic fuzzification on the concept of several ideals in a semigroups S and investigate the basic theorem of intuitionistic fuzzy bi-ideals and discuss the relationships of left (resp. right and completely regular) semigroups in terms of intuitionistic fuzzy biideals. For any homomorphism f from a semigroup S to semigroup T if 𝐵 = (𝜇, 𝑣) is an intuitionistic fuzzy bi-ideal of T, then the preimage 𝑓⁻¹(𝐵) = (𝑓⁻¹(𝜇), 𝑓⁻¹(𝑣)) of B under f is an intuitionistic fuzzy bi-ideal of semigroup S.

Keywords: - Semigroup, intuitionistic fuzzy set, intuitionistic fuzzy left (resp. right) ideal, intuitionistic fuzzy bi-ideal, regular and intra-regular semigroups.
INTRODUCTION

A semigroup is an algebraic structure consisting of a non-empty set S together with an associative binary operation \ast. The formal study of semigroups began in the early 20th century. Semigroups are important in many areas of mathematics, for example, coding and language theory, automata theory, combinatorics and mathematical analysis. The concept of fuzzy sets was introduced by [2] in his classic paper. Azriel Rosenfeld [3] used the idea of fuzzy set to introduce the notions of fuzzy subgroups. Nobuaki Kuroki [4, 5, 6] is the pioneer of fuzzy ideal theory of semigroups. The idea of fuzzy subsemigroup was also introduced by Kuroki [4, 6]. In [5], Kuroki characterized several classes of semigroups in terms of fuzzy left, fuzzy right and fuzzy bi-ideals. Others who worked on fuzzy semigroup theory, such as X.Y. Xie [7, 8], Y.B. Jun [9, 10], are mentioned in the bibliography. The notion of intuitionistic fuzzy sets was introduced by Atanassov [11, 12] as a generalization of the notion of fuzzy sets. The concept of intuitionistic fuzzy bi-ideals of a semigroup S is a generalization of the notion of fuzzy sets. The concept of $(1, 2)$-ideals in semigroups was introduced by S. Lajos [13]. In this paper, we consider the semigroup S in terms of intuitionistic fuzzy bi-ideals, and discuss some relations between the fuzzy subsemigroups (fuzzy bi-ideals, fuzzy left (right) ideals, fuzzy ideals, fuzzy $(1, 2)$-ideals of S and the subsets of S. Among other results we obtain some characterization theorems of regular and intra-regular semigroups in terms of intuitionistic fuzzy bi-ideals. Also for any homomorphism f from a semigroup S to semigroup T if $B = (\mu_B, \nu_B)$ is an intuitionistic fuzzy bi-ideal of T, then the preimage $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B))$ of B under f is a nonintuitionistic fuzzy bi-ideal of semigroup S.

PRELIMINARIES

First we give the concept of intuitionistic fuzzy set defined by Atanassov as a generalization of the concept of fuzzy set given by Zadeh.

Definition 1 [1, 14] If (S, \ast) is a mathematical system such that $\forall a, b, c \in S, (a \ast b) \ast c = a \ast (b \ast c)$, then \ast is called associative and (S, \ast) is called a semigroup.

Definition 2 [1, 14] A semigroup (S, \ast) is said to be commutative if for all $a, b \in S$, $a \ast b = b \ast a$.

Definition 3 [15] A semigroup S is said to be left (right) regular if, for each element a of S, there exists an element x in S such that $a = ax$ (resp. $a = xa$).

Definition 4 [15] A semigroup S is called intra-regular if for each element a of S, there exist elements $x, y \in S$ such that $a = xa^2y$.

Definition 5 [15] A semigroup S is called regular if for each element a of S, there exists an element $x \in S$ such that $a = axa$.

Definition 6 [15] A subsemigroup A of a semigroup S is said to be $(2, 2)$-regular if $\forall x, y \in S$, $x \ast y \ast x = x \ast y$.

Definition 7 [14] A subsemigroup A of a semigroup S is a non-empty subset A of S such that $A \ast A \subseteq A$.

Definition 8 [14] A subsemigroup A of a semigroup S is said to be left (right) ideal of a semigroup S if $\forall a \in A$, $\forall x \in S$, $xa \in A$ (resp. $\forall a \in A$, $\forall x \in S$, $ax \in A$).

Definition 9 [14] A subsemigroup A of a semigroup S is called a bi-ideal of S if $A \ast A \subseteq A$.

Definition 10 [14] A subsemigroup A of a semigroup S is called a $(1, 2)$-ideal of S if $A \ast A \subseteq A$.

Definition 11 [16] A fuzzy subset of a non-empty set X is a function $\mu: X \rightarrow [0, 1]$.

Definition 12 [16] A non-empty fuzzy subset μ of a semigroup S is called an intuitionistic fuzzy subsemigroup of S if $\mu(xy) \geq \min \{\mu(x), \mu(y)\} \forall x, y \in S$.

Definition 13 [16] A fuzzy subsemigroup μ of a semigroup S is called an intuitionistic fuzzy bi-ideal of S if $\mu(xy) \geq \min \{\mu(x), \mu(y)\} \forall x, y, z \in S$.

Definition 14 [16] A fuzzy subsemigroup μ of a semigroup S is called an intuitionistic fuzzy $((1, 2))$ bi-ideal of S if $\mu(xy) > \min \{\mu(x), \mu(y)\} \forall x, y, z \in S$.

Definition 15 [16] A non-empty fuzzy subset μ of a semigroup S is called an intuitionistic fuzzy left(right) ideal of S if $\mu(xy) \geq \mu(y)(\mu(x)\geq \mu(x)) \forall x, y \in S$.

Definition 16 [16] A non-empty fuzzy subset μ of a semigroup S is called an intuitionistic fuzzy twosided ideal of S if it is both a fuzzy left and a fuzzy right ideal of S.

Definition 17 [11,12] An intuitionistic fuzzy sets defined on a non-empty set X as objects having the form $A = \{(x, \mu_A(x), \nu_A(x)): x \in X\}$ where the functions $\mu: X \rightarrow [0, 1]$ and $\nu: X \rightarrow [0, 1]$ denote the degrees of membership and of non-membership of each element $x \in X$ to the set A, respectively, and $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for all $x \in X$. For the sake of simplicity, we shall use the symbol $\langle \mu_A, \nu_A \rangle$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \nu_A(x)): x \in X\}$.

Definition 18 [11,12] Let X be a nonempty set and let $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ be IFSs of X. Then

$\langle 1 \rangle$ If $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$, $A \subseteq B$

$\langle 2 \rangle$ If and only if $A \subseteq B$ and $B \subseteq A$, $A = B$

$\langle 3 \rangle$ $A' = \{(x, \nu_A(x), \mu_A(x)): x \in X\} = \{v_A, \mu_A\}$

$\langle 4 \rangle$ $A \cap B = \{(x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\nu_A(x), \nu_B(x)\}): x \in S\} = \{\mu_A \land \mu_B, v_A \lor \nu_B\}$

$\langle 5 \rangle$ $A \cup B = \{(x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\nu_A(x), \nu_B(x)\}): x \in S\} = \{\mu_A \lor \mu_B, v_A \land \nu_B\}$

$\langle 6 \rangle$ $\cap A = (\mu_1, \mu_2) = (\mu_A, 1 - \mu_A)$

$\langle 7 \rangle$ $A \ast B = \langle \mu_A \land \mu_B, v_A \lor v_B \rangle$ where:
\[
\mu_{A \cdot S}(a) = \begin{cases}
\min\{(\mu_A(y), \mu_S(z)) \} & \text{if } a = yz \\
0 & \text{otherwise}
\end{cases}
\]

\[
v_{A \cdot S}(a) = \begin{cases}
\max\{(\nu_A(y), \nu_S(z)) \} & \text{if } a = yz \\
0 & \text{otherwise}
\end{cases}
\]

Definition 19 [7] Let \(A_i \in \mathcal{A}_i\) be an arbitrary family of IFSs in \(X_i\), where \(A_i = (\mu_{A_i}, \nu_{A_i})\) for each \(i \in I\). Then
\[
\cap A_i = (\wedge \mu_{A_i}, \vee \nu_{A_i})
\]

\[
\cup A_i = (\vee \mu_{A_i}, \wedge \nu_{A_i})
\]

Definition 20 [16] Let \(A\) be a non-empty subset of a semigroup \(S\), the intuitionistic characteristic function \(X_A = (\mu_{X_A}, \nu_{X_A})\) is defined as:
\[
\mu_{X_A}(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \quad \nu_{X_A}(x) = \begin{cases}
1 & \text{if } x \not\in A \\
0 & \text{otherwise}
\end{cases}
\]

INTUITIONISTIC FUZZY BI-IDEALS

In what follows, let \(S\) denote a semigroup unless otherwise specified.

Definition 1 [16] Let \(S\) be a semi-group. An intuitionistic fuzzy set \(A = (\mu_A, \nu_A)\) of \(S\) is said to be an intuitionistic fuzzy subsemigroup of \(S\) (in short, IFSS) if \(S\) if \(\forall x, y \in S\)

\[
\begin{align*}
(i) & \quad \mu_A(xy) \geq \inf \{\mu_A(x), \mu_A(y)\}, \\
(ii) & \quad \nu_A(xy) \leq \sup \{\nu_A(x), \nu_A(y)\}.
\end{align*}
\]

Example 2 Consider the \(S = (\mathbb{Z}, +)\), let \(E\) be the set of all even integer, and \(O\) be the set of all odd integer.

Define \(\mu_A(x) : S \rightarrow [0, 1] \) by \(\mu_A(x) = \begin{cases}
0.4 & \text{if } x \in E \\
0.2 & \text{if } x \in O
\end{cases}\)

and define \(\nu_A(x) : S \rightarrow [0, 1] \) by \(\nu_A(x) = \begin{cases}
0.3 & \text{if } x \in E \\
0.7 & \text{if } x \in O
\end{cases}\)

Then \(A = (\mu_A, \nu_A)\) is an intuitionistic fuzzy subsemigroup of \(S\).

Definition 3 [17] Let \(S\) be a semigroup. An intuitionistic fuzzy set \(A = (\mu_A, \nu_A)\) to be an intuitionistic fuzzy left (right) ideal of \(S\) if \(\forall x, y \in S\)

\[
\begin{align*}
(i) & \quad \mu_A(xy) \geq \mu_A(y) (\text{resp. } \mu_A(x) \geq \mu_A(y)), \\
(ii) & \quad \nu_A(xy) \leq \nu_A(y) (\text{resp. } \nu_A(x) \leq \nu_A(y)).
\end{align*}
\]

Both an intuitionistic fuzzy left ideal and an intuitionistic fuzzy right is called an intuitionistic fuzzy ideal (in short, IFI). It is clear that any intuitionistic fuzzy left (right) ideal of \(S\) is an intuitionistic fuzzy subsemigroup of \(S\).

Example 4 Let \(S = \{a, b, c\}\) be a semigroup with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Define an IFS \(A = (\mu_A, \nu_A)\) in \(S\) by \(\mu_A(a) = 0.2, \mu_A(b) = \mu_A(c) = 0.5,\nu_A(a) = 0.5, \nu_A(b) = \nu_A(c) = 0.3\). It is clear \(A = (\mu_A, \nu_A)\)

Definition 5 [17] Let \(S\) be a semigroup. An intuitionistic fuzzy set \(A = (\mu_A, \nu_A)\) to be an intuitionistic fuzzy bi-ideal of \(S\) if \(\forall x, y, z \in S\)

\[
\begin{align*}
(i) & \quad \mu_A(xzy) \geq \inf \{\mu_A(x), \mu_A(y)\}, \\
(ii) & \quad \nu_A(xzy) \leq \sup \{\nu_A(x), \nu_A(y)\}.
\end{align*}
\]
Example 6 Let \(S = \{a, b, c, d, e\} \) be a semigroup with the following Cayley table:

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
 & a & b & c & d & e \\
\hline
a & a & b & c & d & e \\
b & b & a & d & e & c \\
c & c & d & e & a & b \\
d & d & e & a & b & c \\
e & e & c & b & c & a \\
\hline
\end{array}
\]

Define an IFS \(A = \langle \mu_A, \nu_A \rangle \) in \(S \) by \(\mu_A(a) = 0.9, \mu_A(b) = 0.8, \mu_A(c) = 0.7, \mu_A(d) = 0.7, \mu_A(e) = 0.6, \nu_A(a) = 0.5, \nu_A(b) = 0.7, \nu_A(c) = 0.7, \nu_A(d) = 0.8, \nu_A(e) = 0.9 \). By routine calculation, it is clear \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy bi-ideal of \(S \).

Lemma 7 [16] Let \(A \) be a non-empty subset of a semigroup \(S \). Then

1. \(A \) is a subsemigroup of \(S \) if and only if \(X_A = \langle \mu_{X_A}, \nu_{X_A} \rangle \) is an intuitionistic fuzzy subsemigroup of \(S \).
2. \(A \) is a bi-ideal of \(S \) if and only if \(X_A = \langle \mu_{X_A}, \nu_{X_A} \rangle \) is an intuitionistic fuzzy bi-ideal of \(S \).

Lemma 8 [16] Let \(S \) be a semigroup and \(A, B \subseteq S \) then

(i) \(A \subseteq B \) if and only if \(X_A \subseteq X_B \).
(ii) \(X_A \circ X_B = X_{A \circ B} \).

Theorem 3.9 [15] Every intuitionistic fuzzy left (right) ideal is an intuitionistic fuzzy bi-ideal of \(S \).

Proof. Let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy left (right) ideal of \(S \) and \(x, y, z \in S \). Then
\[
\mu_A(xyz) = \mu_A(xz) \mu_A(y) \geq \mu_A(xyz) \geq \inf \{\mu_A(x), \mu_A(y)\},
\]
and
\[
\nu_A(xyz) = \nu_A(xz) \nu_A(y) \leq \nu_A(xyz) \leq \sup \{\nu_A(x), \nu_A(y)\}.
\]
Thus \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy bi-ideal of \(S \). The right case is proved in an analogous way.

Lemma 10 [16] A semigroup is \(S \) is regular if and only if \(A \circ B = A \cap B \) for each intuitionistic fuzzy right ideal \(A \) and each intuitionistic fuzzy left ideal \(B \) of \(S \).

Lemma 11 [16] A semigroup is \(S \) is intra regular if and only if \(A \circ B \subseteq A \cap B \) for each intuitionistic fuzzy right ideal \(A \) and each intuitionistic fuzzy left ideal \(B \) of \(S \).

Definition 12 [16] An intuitionistic fuzzy bi-ideal \(A = \langle \mu_A, \nu_A \rangle \) of \(S \) is called idempotent if \(A = A^2 = A \circ A \), that is, \(\mu_{A \circ A} = \mu_A \circ \mu_A = \mu_A \), \(\nu_{A \circ A} = \nu_A \circ \nu_A = \nu_A \).

Definition 13 [16] Let \(S \) be a semigroup and \(A = \langle \mu_A, \nu_A \rangle \) an intuitionistic fuzzy bi-ideal of \(S \). Then \(A \) is called an intuitionistic fuzzy irreducible (resp. strongly irreducible) bi-ideal of \(S \) if:

For any intuitionistic fuzzy bi-ideals \(B = \langle \mu_B, \nu_B \rangle \) and \(C = \langle \mu_C, \nu_C \rangle \) of \(S \), \(B \cap C = A \) (resp. \(B \cap C \subseteq A \)) implies \(B = A \) or \(C = A \) (resp. \(B \subseteq A \) or \(C \subseteq A \)).

Lemma 14 [16] A bi-ideal \(B = \langle \mu_B, \nu_B \rangle \) of a semigroup \(S \) is an irreducible (resp. strongly irreducible) if and only if the intuitionistic characteristic function \(X_B = \langle \mu_{X_B}, \nu_{X_B} \rangle \) of \(B \) is an intuitionistic fuzzy irreducible (resp. strongly irreducible) bi-ideal of \(S \).

Theorem 15 [17] Let \(S \) be a regular semigroup. If every bi-ideal of \(S \) is a right(left) ideal of \(S \), then every intuitionistic fuzzy bi-ideal of \(S \) is an intuitionistic fuzzy right(left) ideal of \(S \).

Proof. Assume that every bi-ideal of \(S \) is a right ideal of \(S \). Let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy bi-ideal of \(S \) and let \(x, y \in S \). Then \(xSx \) is a bi-ideal of \(S \), and so \(SxS \) is a right ideal of \(S \). Since \(S \) is regular, we have \(xyS \subseteq xSx \), which implies that \(xy = xzx \) for some \(z \in S \). Since \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy bi-ideal of \(S \), it follows that:
\[
\mu_A(xy) = \mu_A(xzx) \geq \inf \{\mu_A(x), \mu_A(x)\} = \mu_A(x),
\]
and
\[
\nu_A(xy) = \nu_A(xzx) \leq \sup \{\nu_A(x), \nu_A(x)\} = \nu_A(x).
\]
Hence \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy right ideal of \(S \).

Theorem 16 [17] If \(\{A_i\}_{i \in I} \) is a family of intuitionistic fuzzy bi-ideals of \(S \), then \(\bigcap A_i \) is an intuitionistic fuzzy bi-ideal of \(S \), where \(\bigcap A_i = \langle \wedge \mu_{A_i}, \nu_{A_i} \rangle \) and \(\wedge \mu_{A_i}(x) = \inf \{\mu_{A_i}(x) | i \in I, x \in S \} \).
\[v_{A}(x) = \sup \{ v_{A}(x) \mid i \in \Lambda, x \in S \}. \]

Proof. Let \(x, y \in S \). Then we have
\[\wedge \mu_{A}(xy) \geq \wedge \{ \min \{ \mu_{A}(x), v_{A}(y) \} \} = \min \{ \min \{ \mu_{A}(x), \mu_{A}(y) \} \}, \]
\[\vee v_{A}(xy) \leq \vee \{ \max \{ v_{A}(x), v_{A}(y) \} \} = \max \{ \max \{ v_{A}(x), v_{A}(y) \} \}. \]

Hence \(\wedge A_{i} \) is an intuitionistic fuzzy subsemigroup of \(S \). Next for \(x, y, a \in S \) we have
\[\wedge \mu_{A}(x)(xay) \geq \wedge \{ \min \{ \mu_{A}(x), \mu_{A}(y) \} \} = \min \{ \min \{ \mu_{A}(x), \mu_{A}(y) \} \}, \]
\[\vee v_{A}(x)(xay) \leq \vee \{ \max \{ v_{A}(x), v_{A}(y) \} \} = \max \{ \max \{ v_{A}(x), v_{A}(y) \} \}. \]

Hence \(\wedge A_{i} \) is an intuitionistic fuzzy bi-ideal of \(S \).

Theorem 17 [17] If an IFS \(A = (\mu_{A}, v_{A}) \) in \(S \) is an intuitionistic fuzzy bi-ideal of \(S \) then so is \(A = (\mu_{A}, \mu_{A}) = (\mu_{A}, 1 - \mu_{A}) \).

Proof. It is sufficient to show that \(\mu_{A} \) satisfies the condition (ii) in Definition (3.5). For any \(a, x, y \in S \), we have
\[\bar{\mu}(xay) = 1 - \mu_{A}(xay) \leq 1 - \min \{ \mu_{A}(x), \mu_{A}(y) \} = \max \{ 1 - \mu_{A}(x), 1 - \mu_{A}(y) \}, \]
and
\[\bar{\mu}(xay) = 1 - \mu_{A}(xay) \leq 1 - \min \{ \mu_{A}(x), \mu_{A}(y) \} = \max \{ 1 - \mu_{A}(x), 1 - \mu_{A}(y) \}. \]

Therefore \(A \) is an intuitionistic fuzzy bi-ideal of \(S \).

Definition 18 [17] Let \(A \) be a semigroup. An intuitionistic fuzzy set \(A = (\mu_{A}, v_{A}) \) is said to be an intuitionistic fuzzy (1,2)-ideal of \(S \) if \(\forall x, y, z, w \in S \)
(i) \(\mu_{A}(xwyz) \geq \min \{ \mu_{A}(x), \mu_{A}(y), \mu_{A}(z) \} \)
(ii) \(v_{A}(xwyz) \leq \max \{ v_{A}(x), v_{A}(y), v_{A}(z) \} \).

Example 19 Let \(S = \{ a, b, c, d, e \} \) be a semigroup with the following Cayley table:

\[
\begin{array}{c|cccc}
\hline
x & a & b & c & d \\
\hline
a & a & b & c & d \\
b & b & c & d & e \\
c & c & d & e & a \\
d & d & e & a & b \\
e & e & a & b & c \\
\hline
\end{array}
\]

Define an IFS \(A = (\mu_{A}, v_{A}) \) in \(S \) by \(\mu_{A}(a) = \mu_{A}(b) = \mu_{A}(c) = 1, \mu_{A}(d) = \mu_{A}(e) = 0, v_{A}(a) = v_{A}(b) = v_{A}(c) = 0, v_{A}(d) = v_{A}(e) = 1 \). By routine calculation, it is clear \(A = (\mu_{A}, v_{A}) \) is an intuitionistic fuzzy (1,2)-ideal of \(S \).

We note that \(M = \{ a, b, c \} \) is an a (1,2)-ideal of \(S \), hence \(A = (\mu_{A}, v_{A}) \) can be defined as follows:
\[\mu_{A}(x) = \{ 1 \text{ if } x \in M \} \text{ and } v_{A}(x) = \{ 0 \text{ if } x \in M \} \]
\[0 \text{ otherwise } \]

Theorem 20 [15] Every intuitionistic fuzzy bi-ideal is an intuitionistic fuzzy (1,2)ideal.

Proof. Let \(A = (\mu_{A}, v_{A}) \) be an intuitionistic fuzzy bi-ideal of \(S \) and let \(x, y, w \in S \).
Then
\[\mu_{A}(xzw) = \mu_{A}(xzw) \]
\[\geq \inf \{ \mu_{A}(xyz), \mu_{A}(w) \} \]
\[\geq \inf \{ \inf \{ \mu_{A}(x), \mu_{A}(y) \}, \mu_{A}(w) \} \]
\[= \inf \{ \mu_{A}(x), \mu_{A}(y) \} \text{ and } \mu_{A}(xyzw) = \mu_{A}(xzw) \]
\[\leq \sup \{ v_{A}(xyz), v_{A}(w) \} \]
\[\leq \sup \{ \inf \{ v_{A}(x), v_{A}(y) \}, v_{A}(w) \} \]
\[= \sup \{ \inf \{ v_{A}(x), v_{A}(y) \}, v_{A}(w) \}. \]

Hence \(A = (\mu_{A}, v_{A}) \) is an intuitionistic fuzzy (1,2)-ideal.
To consider the converse of Theorem (3.20), we need to strengthen of a semigroup \(S \).

Theorem 21 [15] If \(S \) is a regular semigroup, then every intuitionistic fuzzy \((1, 2)\)-ideal of \(S \) is an intuitionistic fuzzy bi-ideal of \(S \).

Proof. Assume that a semigroup \(S \) is regular and let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy bi-ideal of \(S \) and let \(z, x, y \in S \). Since \(S \) is regular, we have \(xz \in (xS)S \subseteq xSx \), which implies \(xz = xsx \) for some \(s \in S \). Thus
\[
\mu_A(xzy) = \mu_A((xzx)y) = \mu_A(xsy) \\
\geq \inf \{ \mu_A(x), \mu_A(x), \mu_A(y) \} \\
= \inf \{ \mu_A(x), \mu_A(y) \},
\]
and
\[
\nu_A(xzy) = \nu_A((xzx)y) = \nu_A(xsy) \leq \sup \{ \nu_A(x), \nu_A(x), \nu_A(y) \} \\
= \sup \{ \nu_A(x), \nu_A(y) \}.
\]
Therefore \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy bi-ideal of \(S \).

Theorem 22 [15] Let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy bi-ideal of \(S \). If \(S \) is a completely regular, then \(A(a) = A(a^2) \) for all \(a \in S \).

Proof. Let \(a \in S \). Then there exists \(x \in S \) such that \(a = a^2 = a \). Hence
\[
\mu_A(a) = \mu_A(a^2) \geq \inf \{ \mu_A(a^2), \mu_A(a^2) \} = \mu_A(a) \text{ and}
\]
\[
\nu_A(a) = \nu_A(a^2) \leq \sup \{ \nu_A(a^2), \nu_A(a^2) \} \leq \nu_A(a) \text{ so that } A(a) = A(a^2).
\]

Theorem 23 [15] Let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy ideal of \(S \). If \(S \) is an intra-regular, then \(A(a) = A(a^2) \) for all \(a \in S \).

Proof. Let \(a \) be any element of \(S \). Then since \(S \) is intra-regular, there exist \(x \) and \(y \) in \(S \) such that \(a = xa^2y \). Hence since \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy ideal,
\[
\mu_A(a) = \mu_A(a^2) \geq \mu_A(xa^2y) \geq \mu_A(xa^2) \geq \inf \{ \mu_A(a^2), \mu_A(a^2) \} = \mu_A(a) \text{ and}
\]
\[
\nu_A(a) = \nu_A(a^2) \leq \sup \{ \nu_A(a^2), \nu_A(a^2) \} \leq \nu_A(a) \text{ so that } A(a) = A(a^2).
\]

Theorem 24 [15] Let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy ideal of \(S \). If \(S \) is an intra-regular, then \(A(ab) = A(ba) \) for all \(a, b \in S \). **Proof.** Let \(a, b \in S \). Then by Theorem 3.23, we have
\[
\mu_A(ab) = \mu_A((ab)^2) \geq \mu_A(a(ba)b) \geq \mu_A(a(ba)b) \geq \mu_A(ab) \text{ and}
\]
\[
\nu_A(ab) = \nu_A((ab)^2) \leq \nu_A(a(ba)b) \leq \nu_A(ab) \text{ and}
\]
\[
\nu_A(ab) = \nu_A((ab)^2) \leq \nu_A(ab) \leq \nu_A(ab) \text{ so that } A(ab) = A(ba) .
\]

So we have \(\mu_A(ab) = \mu_A(ba) \) and \(\nu_A(ab) = \nu_A(ba) \). Therefore \(A(ab) = A(ba) \).

Theorem 25 [15] An IFS \(A = \langle \mu_A, \nu_A \rangle \) is an intuitionistic fuzzy bi-ideal of \(S \) if and only if the fuzzy sets \(\mu_A \) and \(\nu_A \) are fuzzy bi-ideals of \(S \).

Proof. Let \(A = \langle \mu_A, \nu_A \rangle \) be an intuitionistic fuzzy bi-ideal of \(S \). Then clearly \(\mu_A \) is a fuzzy bi-ideal of \(S \). Let \(x, a, y \in S \).

Then
\[
\overline{\mu_A}(xy) = 1 - \nu_A(xy) \\
\geq 1 - \sup \{ \nu_A(x), \nu_A(y) \} \\
= \inf \{ (1 - \nu_A(x)), (1 - \nu_A(y)) \} \\
= \inf \{ \overline{\nu_A}(x), \overline{\nu_A}(y) \},
\]
and
\[
\overline{\nu_A}(xay) = 1 - \nu_A(xay) \\
\geq 1 - \sup \{ \nu_A(x), \nu_A(y) \} \\
= \inf \{ (1 - \nu_A(x)), (1 - \nu_A(y)) \} \\
= \sup \{ \nu_A(x), \nu_A(y) \},
\]
Conversely, suppose that μ_A and ν_A are fuzzy bi-ideal of S. Let $x, a, y \in S$. Then

$$1 - v_A(xy) = \nu_A(xy)$$

$$\geq \inf \{\nu_A(x), \nu_A(y)\}$$

$$= 1 - \sup \{v_A(x), v_A(y)\}$$

Which imply that $v_a(xy) \leq \sup \{v_a(x), v_a(y)\}$ and $v_a(xay) \leq \sup \{v_a(x), v_a(y)\}$.

Corollary 26 [15] An IFS $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of S if and only if $A = (\mu_A, \tilde{\mu}_A)$ and $\hat{\phi} A = (\tilde{\nu}_A, \nu_A)$ are intuitionistic fuzzy bi-ideals of S.

Proof. It is straightforward by Theorem 3.25.

Theorem 27 [15] Let $f: S \to T$ be a homomorphism of semigroups. If $B = (\mu_B, \nu_B)$ is an intuitionistic fuzzy bi-ideal of T, then the preimage $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B))$ of B under f is an intuitionistic fuzzy bi-ideal of S.

Proof. Assume that $B = (\mu_B, \nu_B)$ is an intuitionistic fuzzy bi-ideal of T and let $x, y \in S$. Then

$$f^{-1}(\mu_B)(xy) = \mu_B(f(xy))$$

$$= \min \{\mu_B(f(x)), \mu_B(f(y))\}$$

$$\geq \min \{f^{-1}(\mu_B), f^{-1}(\nu_B)\},$$

and

$$f^{-1}(\nu_B)(xy) = \nu_B(f(xy))$$

$$= \max \{\nu_B(f(x)), \nu_B(f(y))\}$$

$$\leq \max \{f^{-1}(\mu_B), f^{-1}(\nu_B)\}.$$

Hence $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B))$ is an intuitionistic fuzzy subsemigroup of S. For any $a, x, y \in S$ we have

$$f^{-1}(\mu_B)(xay) = \mu_B(f(xay))$$

$$= \mu_B(f(x)(a)f(y))$$

$$\geq \min \{\mu_B(f(x)), \mu_B(f(y))\}$$

$$\geq \min \{f^{-1}(\mu_B), f^{-1}(\nu_B)\},$$

and

$$f^{-1}(\nu_B)(xay) = \nu_B(f(xay))$$

$$= \nu_B(f(x)(a)f(y))$$

$$\leq \max \{\nu_B(f(x)), \nu_B(f(y))\}$$

$$= \max \{f^{-1}(\mu_B), f^{-1}(\nu_B)\}.$$

Hence $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B))$ is an intuitionistic fuzzy bi-ideal of S.

ACKNOWLEDGEMENT

We express our warmest thanks to the referees for their valuable comments for improving the paper.

REFERENCES

