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Abstract:-   
The article’s main aim is to point out the significant applications of the linear algebra in the medical engineering field. 

Hence, the eigenvectors and eigenvalues which represent the core of linear algebra are discussed in details in order to 

show how they can be used in many engineering applications. The principal components analysis is one of the most 

important compression and feature extraction algorithms used in the engineering field (1). It mainly depends on the 

calculation and extraction of eigenvalues and eigenvectors that then used to represent an input; whether it's the image 

or a simple matrix. In this article, the use of principal component analysis for medical image compression is an important 

and novel application of linear algebra (2).  
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INTRODUCTION TO EIGENVALUES AND EIGENVECTORS  
If we multiply an n x n matrix by an n x 1 vector we will get a new n x 1 vector back.  In other words,  

𝐴𝜇 = 𝑌                                                                                           (1) 

What we want to know is if it is possible for the following to happen.  Instead of just getting a brand new vector out of 

the multiplication is it possible instead to get the following,  

𝐴𝜇 = λμ 

In other words is it possible, at least for certain λ andμ, to have matrix multiplication be the same as just multiplying the 

vector by a constant.  So, it is possible for this to happen, however, it won’t happen for just any value of λ orμ.  If we do 

happen to have a λ and μ  for which this works (and they will always come in pairs) then we call λ and eigenvalue of A 

and μ an eigenvector of A (3).  

So, how do we go about find the eigenvalues and eigenvectors for a matrix?  We first notice that if μ = 0 then (1) is going 

to be true for any value of λ and so we are going to make the assumption thatμ ≠ 0.  With that out of the way let’s rewrite 

(1) a little.  

 

Notice that before we factored out the μ  we added in the appropriately sized identity matrix.  This is equivalent to 

multiplying things by a one and so doesn’t change the value of anything.  We needed to do this because without it we 

would have had the difference of a matrix, a, and a constant, λ, and this can’t be done.  We now have the difference of 

two matrices of the same size which can be done (4).  

So, with this rewrite we see that  

(𝐴 − λIn)μ = 0  (3) 

 In order to find the eigenvectors for a matrix we will need to solve a homogeneous system.  We will either have exactly 

one solution μ = 0 or we will have infinitely many nonzero solutions.  Since we’ve already said that don’t want μ = 0   

this means that we want the second case.  

   

Knowing this will allow us to find the eigenvalues for a matrix. We will need to determine the values of λ for which we 

get,  

𝑑𝑒𝑡(𝐴 − λI) = 0 

Once we have the eigenvalues we can then go back and determine the eigenvectors for each eigenvalue.  Let’s take a look 

at a couple of quick facts about eigenvalues and eigenvectors (5).  

 

Fact  

If A is an n x n matrix then 𝑑𝑒𝑡(𝐴 − λI) = 0 is an nth degree polynomial.  This polynomial is called the characteristic 

polynomial .To find eigenvalues of a matrix all we need to do is solve a polynomial.  That’s generally not too bad provided 

we keep n small.  Likewise this fact also tells us that for an n x n matrix, A, we will have n eigenvalues if we include all 

repeated eigenvalues (6).  

  

PCA based eigenvectors and eigenvalues  
Principal Components Analysis (PCA) is a way of identifying patterns in data, and expressing the data in such a way as 

to highlight their similarities and differences. It is one of several statistical tools available for reducing the dimensionality 

of a data set based on calculating eigenvectors and eigenvalues of the input data. Since patterns in data can be hard to find 

in data of high dimension, where the luxury of graphical representation is not available, PCA is a powerful tool for 

analyzing data. The other main advantage of PCA is that once you have found these patterns in the data, and you compress 

the data, i.e. by reducing the number of dimensions, without much loss of information. This technique used in image 

compression, as we will see in a later. This will take you through the steps you needed to perform a Principal Components 

Analysis on a set of data (7).   

  

Definition   
Let X jk indicate the particular value of the kth variable that is observed on the jth item. We let n be the number of items 

being observed and p the number of variables measured. Such data are organized and represented by a rectangular matrix 

X given by a multivariate data matrix.  
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In a single-variable case where the matrix X is n x1,  

 
The mean   

  
  

 

And the variance   

 
 

In addition, the square root of the sample variance is known as the sample standard deviation.  

Mean of the kth variable  

 
 

Variance of the kthvariable  

 
 

For convenience of matrix notation, we shall use the alternative notation Skk for the variance of the kth variable; that is,  

  

 
A measure of the linear association between a pair of variables is provided by the notion of covariance. The measure of 

association between the ith and kth variables in the multivariate data matrix X is given by  

 
 

Which is the average product of the deviations from their respective means. It follows that sjk = ski, for all i and k, and 

that for i = k, the covariance is just the variance, s2
k = skk Matrix of variances and covariance   

 
 

The matrix Sn is a symmetric matrix whose diagonal entries arc the sample variances and the subscript n is a notational 

device to remind us that the divisor n was used to compute the variances and covariance. The matrix Sn is called the 

covariance matrix.  

   

Theorem 1  
Let Sn be the p x p covariance matrix associated with the multivariate data matrix X.  

Let the eigenvalues of Sn be λj,j = 1, 2,….,p λ1 ≥  λ2 ≥  …… ≥ λp ≥ 0, and let the associated orthonormal eigenvectors be uj , 

j = 1, 2 ....., p. Then the ith principal component yi is given by the linear combination of the columns of X, where the 

coefficients are the entries of the eigenvector ui; that is, yi = ith principal component = Xui  

  

PCA for image compression  
Principal Component Analysis (PCA) was used for the recognition of patterns and compression of digital images used in 

Medicine. The description of Principal Component Analysis is made by means of the explanation of eigenvalues and 

eigenvectors of a matrix. This concept is presented on a digital image collected in the clinical routine of a hospital, based 
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on the functional aspects of a matrix. The analysis of potential for recovery of the original image was made in terms of 

the rate of compression obtained.  

Principal Components Analysis (PCA) is a mathematical formulation used in the reduction of data dimensions. Thus, the 

PCA technique allows the identification of standards in data and their expression in such a way that their similarities and 

differences are emphasized. Once patterns are found, they can be compressed, i.e., their dimensions can be reduced 

without much loss of information (8).  

 

MRI (Magnetic Resonance Imaging) image compression using PCA  
The steps normally followed in a PCA of a digital image can now be established:   

Step 1: In the computational model of a digital image, in equation (10), the variables X1, X2,...,Xp are the columns of 

the image. The PCA is begun by coding (correcting) the image to that its columns have zero means and unitary variances. 

This is common, in order to avoid one or the other of the columns having undue influence on the principal components 

(9):  

Image corrected by the mean = image – mean of the image  

Step 2: The covariance matrix C is calculated using equation (11), implemented computationally, that is:   

CovImage = image corrected by the mean × (image corrected by the mean)T  

Step 3: The eigenvalues l1, l2 ,...,lp and the corresponding eigenvectors a1 , a2 ,..., ap. are calculated.   

Step 4: The value of a vector of characteristics is obtained, a matrix with vectors containing the list of eigenvectors 

(matrix columns) of the covariance matrix vc = (av1, av2 , av3 ,..., avn )  

Step 5: The final data are obtained, that is, a matrix with all the eigenvectors (components) of the covariance matrix.  

Final data = vcT × (Image - mean)T  

Step 6: The original image is obtained from the final data without compression using the expression Image T = (vc) T × 

final data + meanT  

Step 7: Any components that explain only a small portion of the variation in data for the effect of image compression are 

discarded. The eliminations have the effect of reducing the quantity of eigenvectors of the characteristics vectors and can 

produce final data with a smaller dimension.   

  

Compression ration  
The low-loss compression afforded by the present method may be expressed in terms of the compression factor of (r) and 

of the mean squared error (MSE) committed in the approximation of A (original image) by Ã (image obtained from the 

disposal of some of the components) ( 9 ). The compression factor is defined by:  

 
And the MSE committed in the approximation of A by Ã is:  

𝑀𝑆𝐸                        (13) 

  

Example 1  
Recovering a TIFF image with 512*512 pixels with all the components (512) of image covariance matrix (without 

compression, i.e., steps 1 to 6).  

 
Figure 1-a: MRI original image (512*512) 
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Figure 1-b: Recovered image without compression 

 

Example 2  
Recovery of an image with 32 principal components of the image covariance matrix (with compression).  

 
Figure 2-a: Original MRI image 3 

  

 
Figure2-b: Compressed MRI image (32*512) 

  

RESULTS DISCUSSION  

The Examples show the effects of the reduction in number of principal components (elevation of the image compression 

rate) in the increased loss of information. This application may bring great savings in storage of medical images. However, 

the level of information preserved depends on the parameters (compression rate), and should be modulated by the user’s 

interest. The higher the compression rate (the fewer principal components are used in the characteristics vector) the more 

degraded the quality of the image recovered. In certain applications, such as brain function images, the central principle 

is the variation of the resonance signal over time. In these conditions, the spatial information may be maintained in a 

reference file, making it possible to compress subsequent images with no loss.   

 

On the other hand, it is still necessary to evaluate the pertinence of the application of high compression rates when an 

assessment of structures of reduced dimensions relative to the size of the voxels is needed. Furthermore, the observation 

of the results from the application of the PCA technique in medical images may be considered a complexity measure.   
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In other words, images with dense texture patterns tend to produce different results with the use of the technique described. 

Only points to the line of investigation, in which the results may certify and quantify this possibility. New secondary 

applications (based on the results here described) may encompass various conditions in the medical routine.   

   

CONCLUSION  
Overall, in addition to its mathematical usages, linear algebra has broad usages and applications in most of engineering, 

medical, and biological field.  As science and engineering disciplines grow so the use of mathematics grows as new 

mathematical problems are encountered and new mathematical skills are required. In this respect, linear algebra has been 

particularly responsive to computer science as linear algebra plays a significant role in many important computer science 

undertakings.   

 

The broad utility of linear algebra to computer science reflects the deep connection that exists between the discrete nature 

of matrix mathematics and digital technology. In this paper we have seen one important applications of the linear algebra 

which is called principal components analysis. This technique is used broadly in the medical field for compressing the 

medical images while keeping the good and needed features. However, this is not the only application of linear algebra 

in this field. Linear algebra has many other applications in this field.  It provides many other concepts that are crucial to 

many areas of computer science, including graphics, image processing, cryptography, machine learning, computer vision, 

optimization, graph algorithms, quantum computation, computational biology, information retrieval and web search. 

Among these applications are face morphing, face detection, image transformations such as blurring and edge detection, 

image perspective removal, classification of tumors as malignant or  benign, integer factorization, error-correcting codes, 

and secret-sharing.  
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