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Abstract:-

In this paper we have analyzed prey-predator systems where the prey population is divided into two groups, infected. Also
we have considered the effect of intraspecific competition between infected preys as well as on predator where the species
observed in nature species does not exist alone.

In this paper we discuss different systems of prey — predator model of the general 2dimensional with general incidence
H(S, 1). Also, study discuss different systems of a prey — predator model with general incidence 4(S, /). The aim of this
paper is to study the dynamical behavior of a prey — predator model by different techniques with generalized incidence
term.
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INTRODUCTION

The Lotka (1925) — Voltera (1931) model is one of the earliest prey — predator models
X=X(B—aY)
Y=-Y({yX-6)

For these models several prey — predator models were discussed by many authors [,1 2, 3, 4, 6 and 7].
In this paper we have analyzed this model for general incidence H(S,I)
Data also studied nature of equilibria and stability properties and we present the following model
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Where:
H(S,I): general incidence rate
K: the carrying capacity of the environment
r: the intrinsic birth rate
¢, d: the death rate of infected prey and predator respectively
a, b: the intraspecific competition coefficient the infected prey and predator respectively
q: the coefficient in conversing prey into predator
P: the predation coefficient
S(t),1(t),y(t): are the population density of the susceptible prey, infected prey and predator respectively at a given time
t

EXISTENCE BOUNDEDNESS
In this section, we first show that solution of system (1.1) is bounded.

Theorem 1: system (1.1) is dissipative.
Proof: let {(5(t]. I{£). ¥(t)) be any solution with positive initial conditions (5, [y, v ).

Since, % =sr(l —T—T_:I

We have lim sup 5{t) = M (zee [3]) where M;_.. = max{5(0), K} conzider the function.

W=54+I+¥
The time derivative a long a solution of (1) is:
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S=s{r(1-Z)} - 1€+ Py+oc D) + y(—d +gpl —by) £S(r+1) -5 —cl -
dy = M{r + 1) — mw (zee [14])

Where m = min{l,c.d}

dw

Thus — + mw < M(r + 1)
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Therefore, all solutions of system (1.1) interinto the region

MesD sforany € = U} (2.3) (see [4,3]).
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B= {(s,f,y) € R}: <

The model

Equation (1) has the following non-negative equilibria namely.
Ep = (0,000 E (K000 E . = (55.010.0)

The interior equilibrium point E*(S*,I*,y*)where
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THE NATURE OF EQUILIBRIA
In this section we study and discuss stability properties of the equilibria
The Jacobian matrix of (1.1) around E*is

f—2rs" v+ K{H; + H=)
— 0
K K (3.1)
0 I'H5.)—I'Hp(5.1) — 2al*  —pI’
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Since E0=(0,0,0) is unstable, E'1 is unstable if H (S,])>c. E1,2 is globally asymptotically, thus it is feasible.in the S—Iplane.

Exis locally asymptotically stable. We now show that E'xis globally asymptotically stable whenever it exists.
Theorem 2. If E'xis feasible then it is globally asymptotically stable.

Proof. Define a Lyapunov function V(S,1,Y) such that V(S,1,Y)=c1(S—S*—S*InSS¥/) + C2(I-1*InlI+)+C3(y—y*—y* Inyys/
Where Ci,iare positive constants? Evidently Vis a positive definite function in the region B except at Exwhere it is zero.
Calculating the rate of change of Valong the solutions of system (1), we get
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Choosing C; 28 — ¢, (L +258) = 0,650 - C; = 0
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If follows that
i_z = —C (5.5 - Caall = I"V = Geb(v — v (3.2)
And hance V is negative. So largest invariant set at
Which VVVVVVVV=0 is the equilibrium point and by Lasalle’s invariance
principle, EEEEEEEE+is globally asymptotically stable
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CONCLUSION

Our main results are concerned for discussing equilibria, stability existence and boundedness with general incidence.
H(S,I) we obtained some of the important results are the model (1.1)Eis that in the absence of prey. E|is
unstable. It is observed that If H(S,I)>c, the boundary equilibriaum.E | »is feasible. More over observation about E| >that
it moves a higher level in (S) direction and E,will imply that E «will also be globally asymptotically stable in the S-I
plane. Another important. All solution coverage to the positive equilibrium.
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