ACORUS CALAMUS L. IN FOCUS: AN INTEGRATIVE BOTANICAL REVIEW OF TAXONOMY, MORPHOLOGICAL PLASTICITY, AND HABITAT-DRIVEN EVOLUTION
DOI:
https://doi.org/10.53555/nxq1d116Keywords:
Acorus calamus L., taxonomy, morphological plasticity, wetland ecology, habitat-driven evolution, phenotypic variation, integrative botanyAbstract
Acorus calamus L. is a very intriguing botanical, ecological and evolutionary perennial wetland monocot. Although having a long and rich history of medicinal and cultural use, there is a relative lack of comprehensive integrative analysis of its taxonomy, morphological variability and ecological adaptation. The review is a synthesis of literature both classical and modern to discuss the taxonomic position of A. calamus, morphology, and the degree of phenotypic plasticity that is manifested in the various wetland environments. The importance of habitat heterogeneity, hydrological gradients, and ecological pressures in the morphological diversification and possible evolutionary pathways (cytotypic variation and habitat-induced differentiation) are placed. The review provides the contribution of environmental factors to the adaptive strategies in A. calamus by looking at the integration of taxonomic, morphological, and ecological perspectives. The conservation issues are also discussed in the paper and areas of future research directions are identified which are necessary to gain understanding of the evolutionary ecology of wetland plants.
References
1.Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2022). Genomics and the future of conservation genetics. Nature Reviews Genetics, 23, 451–468.
2.APG IV. (2016/updated usage 2020). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society, 181, 1–20.
3.Cardozo, G. A., Valladares, F., & Souza, C. S. (2024). Phenotypic plasticity as a persistence strategy in variable environments. Journal of Ecology, 112, 345–358.
4.Chen, Y., Wang, Q., & Li, Z. (2022). Light-driven variation in leaf functional traits of emergent wetland plants. Aquatic Botany, 181, 103561.
5.Cheng, Z., Shu, H., Zhang, S., Luo, B., Ji, Y., & Long, C. (2020). From folk taxonomy to species confirmation of Acorus: Phylogenetic and metabolomic evidence. Frontiers in Plant Science, 11, 965.
6.Davidson, N. C., Finlayson, C. M., & McInnes, R. J. (2023). Global wetland losses and the need for urgent conservation action. Marine and Freshwater Research, 74, 227–234.
7.dos Santos, C. S., Ferreira, M. J., & Pires, I. S. (2023). Quantifying phenotypic plasticity under environmental stress. Plants, 12, 4029.
8.Garcia, M. N., Nilsson, C., & Thompson, R. M. (2022). Hydrological heterogeneity drives trait divergence in wetland plants. Journal of Experimental Botany, 73, 939–952.
9.Guo, X., Liu, J., Wang, Y., et al. (2023). Genome evolution of Acorus illuminates early monocot diversification. Nature Communications, 14, 38836.
10.He, X., Wang, Y., & Zhao, Z. (2023). Botanical and chemical perspectives on Acorus calamus. Journal of Ethnopharmacology, 312, 116457.
11.IPBES. (2022). Assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity.
12.Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (2020). Plant systematics: A phylogenetic approach (4th ed.). Sinauer.
13.Keddy, P. A. (2020). Wetland ecology: Principles and conservation (3rd ed.). Cambridge University Press.
14.Kew Science. (2023). Acorus calamus L. Plants of the World Online. Royal Botanic Gardens, Kew.
15.Lavoie, C. (2020). Why invasive plants are a major conservation issue in freshwater wetlands. Biological Invasions, 22, 3011–3025.
16.Li, J., Zhao, Y., & Sun, X. (2024). Macrophyte-derived organic matter supports aquatic food webs. Hydrobiologia, 851, 1021–1035.
17.Liu, H., Zhang, Q., & Chen, F. (2023). Nutrient limitation alters biomass allocation in emergent wetland plants. Aquatic Botany, 187, 103675.
18.Liu, X., Wang, Y., & Zhang, L. (2024). Leaf trait plasticity under flooding in riparian herbs. Ecology and Evolution, 14, e11533.
19.Mitsch, W. J., & Gosselink, J. G. (2015/used in climate syntheses post-2020). Wetlands (5th ed.). Wiley.
20.Moomaw, W. R., Chmura, G. L., Davies, G. T., et al. (2022). Wetlands in a changing climate. Global Change Biology, 28, 2341–2356.
21.Ramsar Convention Secretariat. (2021). Global wetland outlook: Special edition 2021. Gland, Switzerland.
22.Royal Botanic Gardens, Kew. (2023). Global distribution data for Acorus. Plants of the World Online.
23.Singh, P., Verma, R., & Tiwari, S. (2021). Soil controls on wetland medicinal plant distribution. Wetlands Ecology and Management, 29, 847–860.
24.Sokoloff, D. D. (2023). Cytotypic diversity and taxonomy of Acorus (Acoraceae). Diversity, 15, 785.
25.Soltis, D. E., Soltis, P. S., & Endress, P. K. (2021). Phylogeny and evolution of the angiosperms (2nd ed.). University of Chicago Press.
26.Song, H., Zhang, Y., & Li, X. (2024). Phenotypic plasticity in Phragmites under environmental stress. Journal of Plant Ecology, 17, rtae035.
27.Sultan, S. E. (2020). Developmental plasticity and plant evolution. Annual Review of Ecology, Evolution, and Systematics, 51, 417–442.
28.Valladares, F., et al. (2021). Phenotypic plasticity under global change. Biological Reviews, 96, 1991–2014.
29.Wang, Y., Li, X., & Zhou, J. (2022). Root oxygen dynamics and microbial communities in wetlands. Frontiers in Microbiology, 13, 894321.
30.Wetzel, R. G. (2020). Limnology: Lake and river ecosystems (3rd ed.). Academic Press.
31.Wu, Z., Raven, P. H., & Hong, D. (2020). Flora of China (digital updates). Science Press.
32.Yue, C., Zhang, Y., Liu, X., & Wang, Y. (2024). Climatic niche dynamics of Acorus calamus. Plants, 13, 3352.
33.Zhang, L., Chen, J., & Xu, C. (2021). Vegetation-mediated sediment retention in floodplain wetlands. Ecohydrology, 14, e2321.
34.Zhang, L., Chen, J., & Xu, C. (2022). Ecological divergence in emergent macrophytes. Journal of Plant Ecology, 15, 735–747.
35.Zhang, X., Liu, Y., & Wang, Z. (2024). Global plasticity patterns of leaf nutrient traits. Frontiers in Plant Science, 15, 1484744.
36.Zhao, Y., Wang, Y., & Chen, J. (2023). Botany, phytochemistry and ecology of Acorus. Molecules, 28, 7117.
37.Zhou, J., & Wu, Y. (2021). Flood tolerance strategies of wetland monocots. Functional Plant Biology, 48, 945–956.
38.Tilman, D., & Isbell, F. (2020). Biodiversity and ecosystem stability. Annual Review of Ecology, Evolution, and Systematics, 51, 529–551.
39.Junk, W. J., An, S., Finlayson, C. M., et al. (2021). Current state of the world’s wetlands. Aquatic Sciences, 83, 1–19.
40.Cronk, Q. C. B. (2020). Plant evolution and development. Oxford University Press.
41.Levin, D. A. (2020). Polyploidy and novelty in flowering plants. American Naturalist, 195, 1–16.
42.Thomaz, S. M., Cunha, E. R., & Padial, A. A. (2021). Habitat complexity and macrophyte diversity. Freshwater Biology, 66, 209–223.
43.Pott, R., & Pott, U. (2020). Vegetation ecology of central European wetlands. Springer.
44.Hough-Snee, N., et al. (2020). Environmental heterogeneity and riparian plant diversity. Ecological Applications, 30, e02011.
45.IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Cambridge University Press.





