THE CYTO-ARCHITECTURE AND MORPHOLOGICAL DIVERSITY OF THE DORSAL CORTEX NEURONS IN THE GARDEN LIZARD CALOTES VERSICOLOR (DAUDIN)
DOI:
https://doi.org/10.53555/eijas.v3i3.128Keywords:
Spine density, Neuronal types, Golgi technique, ReptilesAbstract
The cyto-architecture and morphology of the neuronal types of the dorsal cerebral cortex of the lizard, Calotes versicolor has been studied with the help of Cresyl violet staining and Golgi impregnation method. The dorsal cerebral cortex displayed three neuronal layers. Layer-I contains only few neuronal somas and also the dendrites ascending from the subjacent layers. Layer-II is characterized by three to four cell thick densely packed neuronal somas. Layer-III contains loosely packed neuronal somas and the dendrites and axon descending from layerI and II. Below the layer-III an ependymal layer is observed just above the ventricle. Using different characteristics such as criteria of location, dendritic tree pattern, dendritic spine covering and soma shape seven classes of neurons were distinguished in the cellular layer of dorsal cortex of Calotes versicolor : multipolar neurons, pyramidal neurons, monotufted bipolar neurons, monotufted neurons, bitufted neurons, inverted pyramidal neurons and aspinous bipolar neurons. The dorsal cerebral cortex shows the pyramidal and multipolar neurons to be dominant type with 38.71% and 30.65% respectively whereas the aspinous bipolar neurons show only 2.69%. The multipolar neurons have mostly intracortical dendritic branching and connections. The spine density of dendrites of the dorsal cortex ranges from 22.67±8.18 to 30.76±7.64 spines in pyramidal, bitufted and multipolar neurons (moderately spinous) whereas it ranges from 10.83±5.64 to 18.18±02.88 spines in monotufted bipolar, monotufted and bitufted bipolar neurons (sparsely spinous) per 25 μm-length of dendritic segment.
References
. Olucha, F.E., Martinez-Garcia, F., Poch, L., Schwerdtfeger, W.K., and Lopez-Garcia, C., (1988). Projections from the medial cortex in the brain of lizards: Correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining. J. Comp. Neurol., 276: 469-480.
. Martinez-Guijarro, F.J., Desfilis, E., and Lopez-Garcia, C., (1990). Organization of the dorsomedial cortex in the lizard Podarcis hispanica. In: Schwerdtfeger, W.K., and Germroth, P. (Eds.) The forebrain in non-mammals. New aspects of structure and development. Berlin, Springer Verlag: 77-92.
. Luis De La Iglesia, J.A. and Lopez-Garcia, C., (1997). A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J. Comp. Neurol., 385: 528-564.
. Lopez-Garcia, C., Molowny, A., Nacher, J., Ponsoda, X., Sancho-Bielsa, F., and Alonso-Llosa, G., (2002). The lizard cerebral cortex as a model to study neuronal regeneration. An. Acad. Bras. Cienc., 74 (1): 85-104.
. Abhinav and Srivastava, U.C., (2006). Neuroanatomy of cerebral cortex of an Indian lizard Mabouia carinata. J. Appl. Biosci., 32 (2): 157-160.
. Maurya, R.C. and Srivastava, U.C., (2006). Morphological diversity of the medial cortex neurons in the common Indian wall lizard, Hemidactylus flaviviridis. Natl. Acad. Sci. Lett. India, 29 (9&10): 375-383.
. Molnar, Z., Metin, C., and Stoykova, A., (2006). Comparative aspects of cerebral cortical development. Eur. J. Neurosci., 23: 921-934.
. Lopez-Garcia, C., Martinez-Guijarro, F.J., Berbel, P., and Garcia-Verdugo, J.M., (1988a). Long spined polymorphic of the medial cortex of lizards: A Golgi, Timm, and electron microscopic study. J. Comp. Neurol., 272: 409-423.
. Lopez-Garcia, C. and Martinez-Guijarro, F.J., (1988). Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards. Brain Res., 463: 207-217.
. Northcutt, R.G., (1967). Architectonic studies of the telencephalon of Iguana iguana. J. Comp. Neurol., 130: 109-148.
. Ulinski, P.S., (1976). Intracortical connections in snake Natrix sipedon and Thamnophis sirtalis. J. Morphol., 150: 463-484.
. Wouterlood, F.G., (1981). The structure of the mediodorsal cerebral cortex in the lizard Agama agama: A Golgi study. J. Comp. Neurol., 196 (3): 443-458.
. Montagnese, C.M., Krebs, J.R., and Meyer, G., (1996). The dorsomedial and dorsolateral forebrain of the zebra finch (Taeniopygia guttata): a Golgi study. Cell Tissue Res., 283: 263-282.
. Srivastava, U.C., Chand, P., and Maurya, R.C., (2007a). Cytoarchitectonic organization and morphology of the cells of hippocampal complex in strawberry finch, Estrilda amandava. Cell. Mol. Biol., 53: 103-120.
. Berbel, P.J., (1988). Cytology of medial and dorsomedial cortices in lizards: A Golgi study. In: Schwerdtfeger, W.K. and Smeets, W. (Eds.). The Forebrain of Reptile. Current Concept on Structure and Function. Basel, Karger: 13-19.
. Ulinski, P.S., (1979). Intrinsic organization of snake dorsomedial cortex: An electron microscopic and Golgi study. J. Morphol., 161 (2): 185-210.
. Minelli, G., (1966). Architettura delle corteccie di alcuni Rettili (Lacerta muralis, Lacerta viridis, Testudo graeca, Crocodilus acutus). Arch. Zool. Ital., 51: 543-573.
. Ebbesson, S.O.E. and Voneida, T.J., (1969). The cytoarchitecture of pallium in the tegu lizard. Brain Behav. Evol., 2: 431-466.
. Regidor, J., Martin-Trujillo, J.M., Lopez-Garcia, C., and Martin-Giron, F., (1974). Estudio citoarquitectonico de la carteza cerebral de reptiles. II. Tipologia dendritic destribucion neuronal en areas corticales de Lacerta galloti. Trab. Inst. Cajal Invest. Biol., 66: 1-32.
. Lacey, D.J., (1978). The organization of the hippocampus of the Fence lizard: A light microscopic study. J. Comp. Neurol., 182: 247-264.
. Garcia Verdugo, J.M., Lopez Garcia, C., Berbel Navarro, P., and Soriano Garcia, E., (1983). Ultrastructure of neuronal cell bodies in dorso-medial cortex of Lacerta galloti. J. Hirnforsch., 24 (3): 307-314.
. Martinez-Guijarro, F.J., Berbel, P.J., Molowny, A., and Lopez-Garcia, C., (1984). Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta). Anat. Embryol., 170: 321-326.
. Font, E., Desfilis, E., Perez-Canellas, M., Alcantara, S., and Garcia-Verdugo, J.M., (1997). 3Acetylpyridineinduced degeneration and regeneration in the adult lizard brain: a qualitative and quantitative analysis. Brain Res., 754: 245-259.
. Ulinski, P.S., (1974). Cytoarchitecture of cerebral cortex in snakes. J. Comp. Neurol., 158: 243-266.
. Srivastava, U.C., Maurya, R.C., and Shishodiya, U., (2007b). Cytoarchitecture and morphology of the different neuronal types of the cerebral cortex of an Indian lizard, Mabouia carinata. Proc. Nat. Acad. Sci. India, 77 (B) IV: 331-347.
. Berbel, P.J., Martinez-Guijarro, F.J., and Lopez-Garcia, C., (1987). Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pityusensis. A Golgi study. J. Morphol., 194: 276-286.
. Colonnier, M., (1964). The tangential organization of the visual cortex. J. Comp. Neurol., 98: 327-344.
. Berbel, P.J., (1986). Chromation at low temperature improves impregnation of neurons in Golgi-aldehyde methods. J. Neurosci. Methods, 17: 255-259.
. Ulinski, P.S., (1977). Intrinsic organization of snake medial cortex: An electron microscopic and Golgi study. J. Morphol., 152 (2): 247-279.
. Guirado, S., De La Calle, A., Gutierrez, A., and Davila, J.C., (1989). Serotonin innervation of the cerebral cortex in lizards. Brain Res., 488: 213-220.
. Ulinski, P.S., (1990). The cerebral cortex of reptiles. In: Jones, E.G. and Peters, A. (Eds.). Cerebral Cortex. Vol. 8A. Comparative Structure and Evolution of Cerebral Cortex. Part I. New York, Plenum Press: 139-215.
. Reiner A., (1991). A comparison of neurotransmitter-specific and neuropeptide specific neuronal cell types present in the dorsal cortex of reptiles with those present in the isocortex of mammals. Brain Behav Evol. 38: 53-91.
. Butler A. B., (1994a). The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19: 29-65.
. Butler A. B., (1994b). The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Rev 19: 66-101.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 EPH - International Journal of Applied Science (ISSN: 2208-2182)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.