REVIEW OF MATLAB-BASED PROJECTS FOR UNDERSTANDING HALF-WAVE DIPOLE ANTENNA CHARACTERISTICS
DOI:
https://doi.org/10.53555/eijas.v10i1.190Keywords:
MATLAB simulation, dipole antenna, , antenna educationAbstract
This article gives a detailed analysis of how MATLAB is used to model half-wave dipole antennas, a basic component in antenna theory and wireless communication. The review analyzes 38 simulation projects from academic, open-source and educational sources and sorts them into key groups: geometry and parameter sensitivity, radiation pattern visualization, impedance and return loss evaluation, optimization-driven designs and hybrid validation with real or full-wave tools. A comparison matrix points out that simulation accuracy, efficiency and customization are strong points, but there are gaps in supporting parasitics, polarization analysis and near-field modeling. It points out that MATLAB is crucial for engineering education, mainly in MOOCs, capstone projects and remote settings, thanks to its ability to repeat scripts and easy-to-use visualization tools. The report adds a taxonomy of simulation approaches, a performance-based framework for classifying them and an outline for the future that recommends AI use, multiband and MIMO modeling, SDR interfacing and open-source benchmarking. The research shows that MATLAB is a useful tool for learning and research and it also suggests ways to improve it for upcoming antenna design challenges in 5G/6G and IoT.
References
Balanis, C. A. (2016). Antenna theory: analysis and design. John Wiley & Sons.
Chen, X., Chen, Y., Yang, F., & Wu, F. (2024, August). Study on the Coupling of Identical Dipole Array Antennas Based on HFSS. In 2024 IEEE 9th International Conference on Computational Intelligence and Applications (ICCIA) (pp. 299-303). IEEE.
Elwasife, K., Aboamra, H., & Shabat, M. (2023). Simulation Mobile Phone Radiation of Dipole Antenna Using HFSS. World Journal of Applied Physics, 8(1), 6-12.
Gismalla, M. S. M., Azmi, A. I., Salim, M. R. B., Abdullah, M. F. L., Iqbal, F., Mabrouk, W. A., ... & Supa’at, A. S. M. (2022). Survey on device to device (D2D) communication for 5GB/6G networks: Concept, applications, challenges, and future directions. IEEE Access, 10, 30792-30821.
Jahanbakhsh Basherlou, H., Ojaroudi Parchin, N., & See, C. H. (2025). Antenna Design and Optimization for 5G, 6G, and IoT. Sensors, 25(5), 1494.
Makarov, S. N., Iyer, V., Kulkarni, S., & Best, S. R. (2021). Antenna and EM modeling with MATLAB antenna toolbox. John Wiley & Sons.
Paine, S. (2017). Basic Antenna Design Handbook.
Ramesh, S., Mahadevan, M., & Kannan, R. (2020). 3D Radiation Pattern Visualization for Dipole Antennas Using MATLAB. International Journal of Antennas and Propagation, 2020, 1–8.
Rashid, T., & Singh, K. (2024). Integration of Deep Learning for Antenna Optimization in MATLAB: A Case Study. Journal of Computational Electromagnetics, 11(1), 34–46.
Sarker, N., Podder, P., Mondal, M. R. H., Shafin, S. S., & Kamruzzaman, J. (2023). Applications of machine learning and deep learning in antenna design, optimization, and selection: a review. IEEE Access, 11, 103890-103915.
Anam, H., Abbas, S. M., Collings, I. B., & Mukhopadhyay, S. (2025). Materials-driven advancements in chipless radio-frequency identification and antenna technologies. Sensors, 25(9), 2867.
Wang, C., Zhang, N., Liu, C., Ma, B., Zhang, K., Li, R., ... & Zhang, S. (2024). New advances in antenna design toward wearable devices based on nanomaterials. Biosensors, 14(1), 35.
Hirani, R. R., Pathak, S. K., & Shah, S. N. (2019). Full-wave analysis and computation of radiation characteristics for reconfigurable plasma antennas. IEEE Transactions on Antennas and Propagation, 67(8), 5185–5193.
Diao, J. (2023). A visualization of receiving characteristics for typical antennas using the Poynting streamline method [education corner]. IEEE Antennas and Propagation Magazine, 65(5), 101–110.
Lo, Y. T., & Lee, S. W. (2013). Antenna Handbook: Theory, Applications, and Design. Springer.
Monica, L. (2020, May). Study on impedance matching of 2.4 GHz dipole antenna. In IOP Conference Series: Materials Science and Engineering (Vol. 846, No. 1, p. 012013). IOP Publishing.
Mathew, S., & Ponnapalli, V. S. (2023). Fractal geometry based antennas and arrays: A review. International Journal of Student Project Reporting, 1(3), 232–260.
Zong, H., Liu, X., Ma, X., Lin, S., Liu, L., Liu, S., & Fan, S. (2017). Design and analysis of a coupling-fed printed dipole array antenna with high gain and omnidirectivity. IEEE Access, 5, 26501–26511.
Liu, X., Zhang, W., Hao, D., & Liu, Y. (2021). Cost-effective surface-mount off-center-fed dipole antenna element and its array for 5G millimeter wave new radio applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(7), 1106–1114.
Pandey, A. K., & Singh, M. P. (2024). Antenna optimization using machine learning algorithms and their applications: A review. Journal of Engineering Science & Technology Review, 17(2).
Beswick, R. C. (2020). The development of MATLAB based tools for antenna array analysis (Doctoral dissertation, Stellenbosch: Stellenbosch University).
Du John, H. V., Jose, T., S, A. G., Sagayam, K. M., Pandey, B. K., & Pandey, D. (2024). Enhancing absorption in a metamaterial absorber-based solar cell structure through anti-reflection layer integration. Silicon, 16(9), 3811–3821.
Erasmus, M. E. (2023). The application of MATLAB® Live Script and Simulink in the electrical engineering mathematics classroom. Journal of Namibian Studies, 35.
Musa, U., Shah, S. M., Majid, H. A., Mahadi, I. A., Rahim, M. K. A., Yahya, M. S., & Abidin, Z. Z. (2024). Design and implementation of active antennas for IoT-based healthcare monitoring system. IEEE Access.
Notaroš, B. M., McCullough, R., Manić, S. B., & Maciejewski, A. A. (2021). Teaching and learning electromagnetics through MATLAB® programming of electromagnetic fields. In Teaching Electromagnetics (pp. 49–75). CRC Press.
Rahmat-Samii, Y., & Werner, D. H. (2025). A comprehensive review of optimization techniques in electromagnetics: Past, present, and future. IEEE Transactions on Antennas and Propagation.
Shamshad, F., & Amin, M. (2012). Simulation comparison between HFSS, CST and WIPL-D for design of dipole, horn and parabolic reflector antenna. Advances in Computational Mathematics and its Applications (ACMA), 1(4), 203–207.
Vandenbosch, G. A., & Vasylchenko, A. (2011). A practical guide to 3D electromagnetic software tools. In Microstrip Antennas. IntechOpen.
Viberg, M., Boman, T., Carlberg, U., Pettersson, L., Ali, S., Arabi, E., ... & Moussa, O. (2008, November). Simulation of MIMO antenna systems in Simulink and embedded MATLAB. In The Nordic MATLAB User Conference.
Arani, M. S., Shahidi, R., & Zhang, L. (2024). A state-of-the-art survey on advanced electromagnetic design: A machine-learning perspective. IEEE Open Journal of Antennas and Propagation.
Manga, S., Muthavarapu, N., Redij, R., Baraskar, B., Kaur, A., Gaddam, S., ... & Arunachalam, S. P. (2023). Estimation of physiologic pressures: Invasive and non-invasive techniques, AI models, and future perspectives. Sensors, 23(12), 5744.
Romdhane, L., & Jaradat, M. A. (2021). Interactive MATLAB-based project learning in a robotics course: Challenges and achievements. STEM Education, 1(1), 32–46.
Sarker, N., Podder, P., Mondal, M. R. H., Shafin, S. S., & Kamruzzaman, J. (2023). Applications of machine learning and deep learning in antenna design, optimization, and selection: A review. IEEE Access, 11, 103890–103915.
Zhao, Y., Liang, R., Chen, X., & Zou, J. (2021). Evaluation indicators for open-source software: A review. Cybersecurity, 4, 1–24.
Arora, C., & Pattnaik, S. S. (2021). Particle swarm optimization based metamaterial inspired circularly polarized patch antenna for S band applications. Evolutionary Intelligence, 14, 801–810.
Bertulli, S. (2005). MATLAB-Based Dipole Array Simulator Tool For MIT Haystack Observatory (Doctoral dissertation, Worcester Polytechnic Institute).
Chatterjee, A., Dutta, A., & Sarkar, P. P. (2024, November). A reflective FSS at 28 GHz with SIW slotted array antenna for 5G applications. In 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON) (pp. 1–5). IEEE.
Kataja, J., & Nikoskinen, K. (2010). The parametric optimization of wire dipole antennas. IEEE Transactions on Antennas and Propagation, 59(2), 350–356.
Manninen, O. (2017). Modelling the antenna arrays using MATLAB-application Sensor Array Analyzer (Bachelor's thesis, O. Manninen).
Ozdemir, E., Akgol, O., Ozkan Alkurt, F., Karaaslan, M., Abdulkarim, Y. I., & Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences, 10(1), 378.
Romputtal, A., & Phongcharoenpanich, C. (2023). T-slot antennas-embedded ZigBee wireless sensor network system for IoT-enabled monitoring and control systems. IEEE Internet of Things Journal, 10(23), 20834–20845.
Sharma, T. (2022). Analysis and design of reconfigurable MHD antenna (Doctoral dissertation, JC Bose University).
Straka, T., Vojtech, L., & Neruda, M. (2024). Graphical heatmap-based approach to indoor radio signal propagation: Adapting advanced ray tracing and global illumination algorithms. IEEE Transactions on Antennas and Propagation.
Syed, A. M. (2020). RF front end receiver section integration for MMIC based advanced wireless communication systems (Doctoral dissertation, University of Massachusetts Lowell).
Antenna Designer - Design, visualize, and analyze antennas - MATLAB. (n.d.). https://www.mathworks.com/help/antenna/ref/antennadesigner-app.html