Gene Therapy Approaches in Neurodegenerative Diseases: An Overview
DOI:
https://doi.org/10.53555/95wy1110Keywords:
Neurodegenerative diseases, Alzheimer disease, Parkinson disease, Huntington disease, ALS, Gene therapyAbstract
Neurodegenerative diseases are a major challenge in modern neuroscience. Disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis (ALS) cause serious nerve cell damage and gradual loss of body functions. Because many of these diseases are linked to faulty genes, gene therapy has gained attention as a possible way to slow or change disease progression.
In Alzheimer’s disease, gene therapy focuses on delivering genes like ApoE and BDNF to reduce harmful amyloid plaques and support nerve cell survival. Parkinson’s disease studies mainly use viral vectors to deliver genes that increase dopamine production and improve movement. Huntington’s disease treatment aims to silence the defective HTT gene using RNA-based methods and gene editing tools. In ALS, therapies target genes such as SOD1 and C9orf72 to protect motor neurons.
Modern tools like viral vectors, CRISPR-Cas9, and antisense therapies show strong potential. However, challenges such as safe delivery, side effects, immune reactions, and ethical issues remain. Overall, gene therapy offers hope for more personalized and effective treatments for neurodegenerative diseases.
References
1.Lamptey RNL, Chaulagain B, Trivedi R. Gothwal A. A review of the common neurodegenerative disorders: current therapeutic approaches & the potential role of nanotherapeutics. Int J Mol Sci. 2022; 23(3): 1851.
2.Wei Chen, Yang Hu, Dianwen Ju. Gene therapy for neurodegenerative disorders: advances, insights 4 prospects. Acta Pharm Sin B. 2020; 10(8): 1347-1359.
3.Ingusci S, Verlengia G, Soukupova M, Zucchini S. Gene therapy tool for brain diseases. Front Pharmacol. 2019; 10: 724.
4.Nerea G, Jaime G, Ricardo G, Jesus m. Dolores E. advanced and challenges in gene therapy for neurodegenerative diseases: a systematic review. Int J Mol Sci. 2024; 25(23): 12485.
5.Martier R, Konstantinova P. Gene therapy for neurodegenerative diseases: slowing down the Ticking clock. Front Neurosci. 2020; 14: 580179.
6.Jindal D. Recent advances in gene therapy for neurological disorders: a comprehensive overview. Adesh Univ J Med Sci Res. 2025; 7(1): 21-29.
7.Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurother. 2019; 16: 166-175.
8.Hussain R, Zubair H, Rursell S, Shahab M. Neurodegenerative diseases: regenerative mechanisms & novel therapeutic approaches. Brain Sci. 2018; 8: 177.
9.Chand P, Sastri K, Chauhan A, Chakraborty S, Jakhmola V. Advances in gene therapy for neurologic disorders: an overview. BIOI. 2025; 6(4): 1-17.
10.Wang L, Ma L, Gao Z, Wang Y, Qiu J. Significance of gene therapy in neurodegenerative diseases. Front Neurosci. 2025; 19: 1-18.
11.Zhu X, Zhang Y, Yang X, Hao C and Duan H. Gene therapy for neurodegenerative disease: clinical potential and directions. Front Mol Neurosci. 2021; 14: 618171.
12.Sundal C, Fujioka S, Uitti RJ, Wszolek ZK. Autosomal dominant Parkinson’s disease. PRD. 2012; 18(S1): S7-S10.
13.Chen V, Moncalvo M, Tringali D, Tagliafierro L. The mechanistic role of alpha-synuclein in the nucleus: impaired nuclear function caused by familial Parkinson’s disease SNCA mutations. Hum Mol Genet. 2020; 29(18): 3107-3121.
14.Ji YH, Jeong SW, Hyun N, Hye WL. Current advances in combining stem cell and gene therapy for neurodegenerative disease. P&FM. 2018; 2(2): 53-65.
15.Gadhave G, Sugandhi V, Jha S, Nangare S. Neurodegenerative disorders: mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev.2024; 99: 102357.
16.Saudou F, Humbert S. The biology of Huntingtin. Neuron. 2016; 89(5): 910-926.
17.Montero-Odasso M, Ismail Z, Camicioli R. Alzheimer disease, biomarkers, and clinical symptoms-quo vadis? JAMA Neurol. 2020; 77(3): 393-394.
18.Agnihotri A, Aruoma OI. Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J Am Coll Nutr. 2020; 39(1): 16-27.
19.Libon DJ, Lamar M, Swenson RA. Vascular disease, Alzheimer’s disease, and mild cognitive impairment: advancing an integrated approach. OUP. 2020; 9(1): 76-92.
20.Mufson EJ, Counts SE, Ginsberg SD, et al. Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci. 2019; 13: 533-544.
21.Huang Z, Li J, Zhou J, Zhang J. Alzheimer’s disease and nerve growth factor gene therapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019; 44(12): 1413-1418.
22.Hitti FL, Gonzalez-Alegre P, Lucas TH. Gene therapy for neuro logic disease: a neurosurgical review. World Neurosurg. 2019; 121: 261-273.
23.Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res. 2019; 14(6): 931-938.
24.Li Y, Wang Y, Wang J, et al. Expression of neprilysin in skeletal muscle by ultrasound-mediated gene transfer (Sonoporation) reduces amyloid burden for AD. Mol Ther Methods Clin Dev. 2020; 17: 300-308.
25.Hong CS, Goins WF, Goss JR, Burton EA, Glorioso JC. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-β peptide in vivo. Gene Ther. 2006; 13(14): 1068-1079.
26.Mandel RJ. CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr Opin Mol Ther. 2010; 12(2): 240-247.
27.Piedrahita D, Hernández I, López-Tobón A. Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J Neurosci. 2010; 30(42): 13966-13976.
28.Quan Q, Qian Y, Li X, Li M. CDK5 participates in amyloid-β production by regulating PPARγ phosphorylation in primary rat hippocampal neurons. J Alzheimers Dis. 2019; 71(2): 443-460.
29.Parmar M, Grealish S, Henchcliffe C. The future of stem cell ther apies for Parkinson disease. Nat Rev Neurosci. 2020; 21(2): 103-115.
30.Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med. 1998; 339 (16): 1130-1143.
31.Jarraya B, Boulet S, Ralph GS. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med. 2009; 1(2): 2ra4.
32.Azzouz M, Ralph S, Wong LF. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport. 2004; 15(6): 985-990.
33.Azzouz M, Martin-Rendon E, Barber RD. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic l amino acid decarboxylase, tyrosine hydroxylase, and gtp cyclo hydrolase i induces sustained transgene expression, dopamine pro duction, and functional improvement in a rat model of Parkinson’s disease. J Neurosci. 2002; 22(23): 10302-10312.
34.Muramatsu S, Fujimoto K, Kato S. A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther. 2010; 18(9): 1731-1735.
35.Kanao-Kanda M, Kanda H, Liu S, Roy S, Toborek M, Hao S. Viral vector-mediated gene transfer of glutamic acid decarboxylase for chronic pain treatment: a literature review. Hum Gene Ther. 2020; 31(7-8): 405-414.
36.Muñoz MD, de la Fuente N, Sánchez-Capelo A. TGF-β/Smad3 signalling modulates GABA neurotransmission: Implications in Parkinson’s disease. Int J Mol Sci. 2020; 21(2): 590.
37.Le Witt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011; 10(4): 309-319.
38.Marks WJ Jr, Bartus RT, Siffert J. Gene delivery of AAV2 neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010; 9(12): 1164-1172.
39.Niedermeyer S, Murn M, Choi PJ. Respiratory failure in amyotrophic lateral sclerosis. Chest. 2019; 155(2): 401-408.
40.Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS genetics: gains, losses, and implications for future therapies. Neuron. 2020; 108(5): 822-842.
41.Amado DA, Davidson BL. Gene therapy for ALS: a review. Mol Ther. 29(12); 2021: 3345-3358.
42.Wong PC, Pardo CA, Borchelt DR. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995; 14(6): 1105-1116.
43.Chia R, Chiò A, Traynor B J. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018; 17: 94-102.
44.Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD. Aggregation and motor neuron toxicity of an ALS linked SOD1 mutant independent from wild-type SOD1. Science. 1998; 281: 1851-1854.
45.Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 2020; 383: 109-119.
46.Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther. 2013; 21: 2148-2159.
47.Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P. In vivo genome editing improves motor function and extends survival in a mouse model of ALS Sci Adv. 2017; 3(12): eaar3952.
48.Mueller C, Berry JD, McKenna-Yasek DM, Gernoux G. SOD1 suppression with adeno-associated virus and microrna in familial ALS. N Engl J Med. 2020; 383: 151-158.
49.Jain KK. Neuroprotection in Huntington disease the handbook of neuroprotection. New York, NY: Humana 2019; 587-607.
50.Zala D, Bensadoun JC, Pereira de Almeida L. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington’s disease transgenic mice. Exp Neurol. 2004; 185(1): 26-35.
51.Colpo GD, Furr Stimming E, Teixeira AL. Stem cells in animal models of Huntington disease: A systematic review. Mol Cell Neurosci. 2019; 95: 43-50.
52.Shannon KM. Recent advances in the treatment of Huntington’s disease: Targeting DNA and RNA. CNS Drugs 2020; 34(3): 219 228.
53.Spronck EA, Brouwers CC, Valles A. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in Huntington disease mouse models. Mol Ther Methods Clin Dev. 2019; 13: 334-343.
54.Hwang JY, Won JS, Nam H, Lee HW, Joo KM. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precis Future Med. 2018; 2(2): 53-65.
55.Aguiar S, van der Gaag B, Cortese FAB. RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA. Transl Neurodegener. 2017; 6: 30.
56.Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR. Huntington disease. Nat Rev Dis Primers. 2015; 1: 15005.
57.Harper SQ, Staber PD, He X, Eliason SL, Martins IH. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A. 2005; 102(16): 5820-5825.
58.Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019; 101(5): 801-819.
59.Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016; 25(20): 4566-4576.
60.Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021; 24(3): 297-311.
61.Joung JK, Sander JD. TALENs: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1): 49-55.
62.Landrum MJ, Lee JM, Riley GR, Jang W. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014; 42 (Database issue): D980-985.
63.Rinaldi C, Wood MJA Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018; 14(1): 9-21.






Licensed under CC BY 4.0 International.