BIOCHEMICAL INVESTIGATIONSOF THE EFFECT OF XANAX ON THE CEREBELLAR TISSUES OF MALE MICE

Authors

  • Samah A. Khalifa Zoology Department, Omar Al-Moukhtar University, El Beida, Libya.
  • Eda M.A. Alshailabi Zoology Department, Omar Al-Moukhtar University, El Beida, Libya.

DOI:

https://doi.org/10.53555/eijas.v7i4.42

Keywords:

Xanax, Acetylcholinesterase, Glutathione Stransferase, Cerebellar, Mice

Abstract

Xanax is an agent with hypnogenic, anxiolytic, anticonvulsant, and muscle relaxant properties and has generally been used as a hypnotic/tranquilizer. The aim of this paper was to investigate the effect of Xanax on acetylcholinesterase and glutathionestransferase enzyme activities on the cerebellar tissues of male mice. Sixty male mice were randomly assigned into four groups (15 mice/each) according to their approximately equal mean body weight. Mice that received orally by gavage 0.5 ml saline solution of 0.9% NaCl were considered as a control mice. Other experimental mice were daily administered orally by gavage with 0.5 ml of different three doses of Xanax (0.5, 1 and 1.5 mg/kg bw), for two months. Biochemical analyses revealed significant decreases in the activities of acetylcholinesterase and glutathionestransferase enzyme in the brain tissues of mice administered with the three doses of Xanax. The major mechanism involved appears to be the result of oxidative stress scavenging action on the neuronal cells of cerebellar cortex of male mice.

References

. O¨Hman, A. (2000). Anxiety. In: Fink, G. (Ed.), Encyclopedia of Stress. Academic Press, San Diego, Pp. 226–231.

. Huppmann, G. and Hellhammer, D. (1978). Aspekte Der Angst-Furcht Differenzierung. ZeitschriftFu¨RKlinische PsychologieUndPsychotherapie. 26: 115– 127.

. Fawcett, J. A. and Kravitz, H. M. (1982). Alprazolam. Pharmacokinetics, Clinical Efficacy, and Mechanism of Action. Pharmacotherapy, 2: 243–254.

. Dawson, G. W., Jue, S. G. and Brogden, R. N. (1984). Alprazolam: A Review of Its Pharmacodynamic Properties and Efficacy In The Treatment Of Anxiety And Depression. Drugs, 27: 132–147.

. Greenblatt, D, J., Divoll, M., Abernethy, D. R., Ochs, H. R. and Shader, R. I. (1983). Clinical Pharmacokinetics of the Newer Benzodiazepines. ClinPharmacokinet, 8: 233–252.

. Smith, R. B., Kroboth, P. D., Vanderlugt, J. T., Phillips, J. P. and Juhl, R. P. (1984). Pharmacokinetics and Pharmacodynamics of Alprazolam after Oral and I.V. Administration. Psychopharmacology. 84: 452–456.

. Garzone, P. D. and Kroboth, P. D. (1989). Clinical Pharmacokinetics of the Newer Benzodiazepines. ClinPharmacokinet, 16: 337–364.

. Cuparencu, B., Horak, J., Marmo, E., De Santis, D., Lampa, E., Lo Sasso, C. and Rossi, F. (1991). The Influence of The Peripheral-Type Benzodiazepine Receptor Antagonist Pk 11195 On Blood Glucose And Serum Lipid Levels In Rats. Interactions with Diazepam, CurrTher Res, 49: 409–414.

. Katzung, B. G., Masters, S. B. and Trevor, A. J. (2009). Basic and Clinical Pharmacology, 11th Edition, Mcgraw–Hill, Lange.

. Cloos, J.M. and Ferreira, V. (2009). Current Use Of Benzodiazepines In Anxiety Disorders. Curr. Opin. Psychiatry, 22 (1): 90–95. 288

. D’Hulst, C., Atack, J.R. and Kooy, R.F. (2009). The Complexity of The GABAA Receptor Shapes Unique Pharmacological Profiles. Drug Discov. Today. 14 (17– 18): 866–875.

. Rudolph, U. and Mohler, H. (2006). GABA-Based Therapeutic Approaches: GABAA Receptor Subtype Functions. Curr. Opin. Pharmacol. 6 (1): 18–23.

. Platt, M,, Bettina, A., Riedel, E. and Gernot, D. (2011). The Cholinergic System, EEG and Sleep. Behav. Brain Res, 221 (2): 499-504.

. Gulledge, A. T., Bucci, D. J., Zhang, S. S., Matsui, M. and Yeh, H. H. (2009). Receptors Mediate Cholinergic Modulation Of Excitability In Neocortical Pyramidal Neurons. J Neurosci, 29 (31): 9888-9902.

. Liu, J., Wang, X. and Mori, A. (1994). Immobilization Stress Induced Antioxidant Defences Changes In Rat Plasma. Effect Of Treatment With Reduced Glutathione. Int J Biochem, 14: 511-517.

. Woolf, N. J. and Butcher, L. L. (1986). Cholinergic Systems In The Rat Brain: III. Projections from the Pontomesencephalic Tegmentum to The Thalamus, Tectum, Basal Ganglia, And Basal Forebrain. Brain Res. Bulletin, 16 (5): 603–637.

. Anwar, J., Krishna, K.P., Khanam, R., Akhtar, M. and Vohora, D. (2011). Effect of Alprazolam on Anxiety And Cardiomyopathy Induced By Doxorubicin In Mice. Fundamen Clinic Pharma, 10: 1–7.

. Pelligrino, L. J., Pelligrino, A. S. and Cushman, A. J. (1979). Stereotaxic Atlas of the Rat Brain. Plenum, New York.

. Ellman, K. D., Courtney, V. and Andres, V. (1961). Feather Stone a New and Rapid Colorimetric Determination of Ache-Activity. Biochem Pharmacol, 7: 88–95.

. Habig, W., Pabst, M. and Jakoby, W. (1974). Glutathione- S- Transferase; the First Step In Mercapturic Fermentation. J BiolChem, 249: 7130-7139.

. Bondy, S. C. (1997). Free-Radical-Mediated Toxic Injury To The Nervous System, In: K. B. Wallace (Ed.), Free Radical Toxicology, Taylor &Francis, Oxford. 221248.

. Verma, R. S. and Srivastava, N. (2001). Chlorpyrifos Induced Alterations In Levels Of Thiobarbituric Acid Reactive Substances And Glutathione In Rat Brain. Ind J Exp Biol, 39: 174–177.

. Hussain, S., Slikker, W. and Ali, S. F. (1995). Age-Related Changes In Antioxidant Enzymes, Superoxide Dismutase, Catalase, Glutathione Peroxidase And Glutathione In Different Regions Of Mouse Brain. Int J Dev Neurosci, 13: 811-817.

. Baek, B. S., Kwon, H. J., and Lee, K. H. (1999). Regional Difference of ROS Generation, Lipid Peroxidation, And Antioxidant Enzyme Activity In Rat Brain And Their Dietary Modulation. Arch Pharm Res., 22: 361–6.

. Tsakiri, S., Angelogianni, P., Schulpis, K. H. and Stavridis, C. (2000). Protective Effect of L-Phenylalanine On Rat Brain Acetylcholine Esterase Inhibition Induced By Free Radicals. ClinBiochem, 33: 103-106.

. Feoli, A. M., Siqueira, I. R., Almeida, L., Tramontina, A. C., Vanzella, C., Sbaraini, S., Schweigert, I. D., Netto, C. A. and Perry, M. L. (2006). Effects of Protein Malnutrition On Oxidative Status In Rat Brain. Nutrition, 22: 160-165.

. Imbe, H., Iwai-Liao, Y. and Senba, E. (2006). Stress Induced Hyperalgesia: Animal Model and Putative Mechanisms. Front Biosci, 11: 2179 -2192.

. Levi, L. and Basuaj, E. (2000). An Introduction Clinical and Neuroendocrinology. Basel: Karger. 1: 78.

. Gilgun-Sherki, Y., Melamed, E. and Offen, D. (2001). Oxidative Stress Induced-Neurodegenerative Diseases: The Need for Antioxidants That Penetrate The Blood Brain Barrier. Neuropharmacol, 40: 959-975.

. Trivedi, M. H., Verma, R. J., Chinoy, N. J., Patel, R. S. and Sathawara, N. G. (2007). Effect of High Fluoride Water on Intelligence Of School Children InIndia. Fluoride, 40 (3): 178-183.

. Zhang, M., Wang, A., Xia, T. and He, P. (2008). Effects of Fluoride on DNA Damage, S-Phase Cell-Cycle Arrest and The Expression Of NF-Κb In Primary Cultured Rat Hippocampal Neurons. ToxicolLett, 179 (1): 1-5.

. Mylonas, C. and Kouretas, D. (1999). Lipid Peroxidation and Tissue Damage. In Vivo, 13: 295-309.

Downloads

Published

2021-12-27