NUCLEOPHILIC SUBSTITUTION REACTIONS OF 2, 4-DINITTROPHENYL ACETATE WITH HYDRAZINE AND METHANOL SOLVENT EFFECT

Authors

  • Mahmoud F. Ibrahim Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
  • Hanaa A. Abdel-Reheem Department of Chemistry, Faculty of Science, Omar El-Mokhtar University, El -Beyda-Libya
  • Ezzat A. Hamed Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt

DOI:

https://doi.org/10.53555/eijas.v6i1.106

Keywords:

2, 4-Dinittrophenyl Acetate, methanol Solvent, Hydrazine, Nucleophilic

Abstract

The generally accepted mechanism for nucleophilic aromatic substitution (the snare mechanism) is an addition-elimination mechanism and involves the formation of a Meisenheimer type of intermediate. The hydrazinolysis of 2,4-dinitrophenyl acetate in methanol proceeds exclusively through acyl-oxygen scission by a concerted mechanism. The process depends on the basicity of the leaving group and its steric hindrance as well as the possible intramolecular hydrogen bond in the transition state. The reactions of 2,4Dinittrophenyl Acetate with hydrazine obeyed pseudo-first-order rate constants (kobs). The linearplot of kobs vs. amine concentration indicated that there is no base-catalysis.The large negative ΔS# value indicates a rigid transition state or great participation of methanol molecules in the activated complex.

References

. Bunnett, J.F.; Mitchell, E.; Galli, C. Tetrahedron 1985,41,4119. b) Galli, C. Tetrahedron 1988.44, 5205.

. Bunnett, J.F. ACC. Chem. Res. 1978, 11, 413. b) SavCant, J.M. Adv. Phys. Org. Chem. 1990, 26, 1.

. X.M.; Yang, D.L.; Liu, Y.C. J. Org. Chem. 1993.58, 224. e) Zhang, X.M.; Yang, D.L.; Jia, X.Q.; Liu, Y.C. J. Org. Chem. 1993,58, 7350.

. Terrier, F. (1991). Nucleophilic Aromatic Displacement. The Influence of the Nitro Group. New York: VCH.

. Isanbor, C., &Babatunde, A. I. (2009). Kinetics of SNAr reactions of 1phenoxy-nitrobenzenes with aliphaticamines in toluene: ring substituent and solvent effects on reaction pathways. J. Phys. Org. Chem., 22, 1078-1085. http://dx.doi.org/10.1002/poc.1562

. Paghaleh, J. J., Harifi-Mood, A. R., &Gholami, M. R. (2011). Reaction kinetics investigation of1-fluoro-2,4-dinitrobenzene with substituted anilines in ethyl acetate–methanol mixtures using linear andnonlinear free energy relationships. J. Phys. Org. Chem., 24, 1095-1100.

. Guanti, G., Dell’Erba, C., Pero, F., &Cevasco, G. (1978). Polar effects in nucleophilic substitutions at aromaticand carbonyl carbon atoms. Kinetics of the reactions of substituted arenethiolates with 2, 4-dinitrophenylacetate and benzoate. J. Chem. Soc., Perkin Trans. 2, 422-425.

. Kirsch, J. F., Clewell, W., & Simon, A. (1968). Multiple structure reactivity correlations. Alkaline hydrolyses ofacyl and aryl-substituted phenyl benzoates. J. Org. Chem., 33, 127-132.

. Guanti, G., Dell’Erba, C., Pero, F., &Leandri, G. (1977). Acyl–oxygen versus aryl–oxygen bond scission inreactions of benzenethiolate with nitrophenyl esters of carboxylic acids. J. Chem. Soc., Perkin Trans. 2,966-970.

. Guanti, G., Dell’Erba, C., & Pero, F. (1975). Acyl-O versus aryl-O bond scission in reactions of benzenethiolate with nitrophenyl esters of carboxylic acids. Chem. Comm., 823-824.

. Ibrahim, M. F., Senior, S., El-Atawy, M. A., El-Sadany, S. K., &Hamed, E. A. (2011). DFT calculations of2, 4, 6-trinitrophenylbenzoate derivatives: Structure, ground state properties and spectral properties. J. Mol.Struct., 1006, 303-311.

. Edwards, J. O., & Pearson, R. G. (1973). Hard and soft Acids and Bases.

. Dawson, R. M. C. (1989). Data for Biochemical Research. Oxford Clarendon Press

. Menger, F. M., & Smith, J. H. (1972). Mechanism of ester aminolyses in aprotic solvents. J. Am. Chem. Soc., 94, 3824-3829.

. Hall Jr., H. K. (1957). Correlation of the Base Strengths of Amines. J. Am. Chem. Soc., 79, 5441-5444.

Downloads

Published

2020-03-27