BLOODSTREAM INFECTIONS IN ICU PATIENTS FROM TERTIARY CARE HOSPITAL ON AUTOMATED BLOOD CULTURE BD BACTEC AND VITEK 2 COMPACT SYSTEM
DOI:
https://doi.org/10.53555/eijas.v10i1.179Keywords:
BD BACTEC™, VITEK 2 COMPACT, ICU, GNBAbstract
Background: Bloodstream infections are a leading cause of morbidity and mortality, especially in ICU patients. This prospective observational study analyzed 750 ICU cases from May 1, 2022, to May 31, 2023, using automated BACTEC™ blood culture methods. These methods showed higher sensitivity, specificity, and faster results compared to traditional cooked meat enrichment broth methods.
Aim: The study employed the VITEK 2 system, an advanced iteration of the original 1970s VITEK system, to identify organisms and conduct antimicrobial susceptibility testing (AST).
Methods: A standardized method was employed using the 750 samples subjected to the BD BACTEC™ blood culture system. Extended microbiological culture for two weeks is unnecessary with BACTEC™ methods, as most clinically significant organisms are detected within three days. The VITEK2 system, an automated platform for organism identification and antimicrobial susceptibility testing (AST) monitors reactions in every 15 minutes during incubation.
Results: This prospective observational study included 750 samples, admitted to the ICU. Samples were cultured and assessed for antimicrobial susceptibility patterns: out of 132 positive samples, 84 (63.63%) blood cultures showed microbial growth with mono-microbial presence. Gram-negative bacilli were identified in 45 cases (53.57%), with E. coli being the most common, while Gram-positive organisms accounted for 39 cases (47.42%), predominantly S.haemolyticus.
Conclusions: Gram-negative isolates exhibited sensitivity to only a limited number of drugs. Blood culture isolates from critically ill patients in the intensive care unit were multidrug-resistant, including MRSA, highlighting a significant concern regarding the rise of severe antibiotic resistance.
References
Wasihun A, Wlekidan L, Gebremariam S, et al. Bacteriological profile and antimicrobial susceptibility patterns of blood culture isolates among febrile patients in Mekelle Hospital, Northern Ethiopia. Springerplus 2015; 4: 314.
Timsit J, Ruppe´ E, Barbier F, et al. Bloodstream infections in critically ill patients: an expert statement. Intens Care Med 2020;
Gohel K, Jojera A, Soni S, Gang S, Sabnis R, Desai M. Bacteriological profile and drug resistance patterns of blood culture isolates in a tertiary care nephrourology teaching institute. Biomed Res Int 2014; doi: 10.1155/ 2014/153747. Epub ahead of print 2014 Apr 7.
Savanur S and Gururaj H. Study of antibiotic sensitivity and resistance pattern of bacterial isolates in intensive care unit setup of a Tertiary Care Hospital. Ind J Crit Care Med 2019; 23: 547–555
Simkhada P, Raj KCS, Lamichhane S, et al. Bacteriological profile and antibiotic susceptibility pattern of blood culture isolates from patients visiting Tertiary Care Hospital in Kathmandu, Nepal. Global J Med Res Part C: Microbiol Pathol 2016; 16: 25–31.
Hughes HC, Newnham R, Athanasou N, Atkins BL, Bejon P, Bowler IC: Microbiological diagnosis of prosthetic joint infections: a prospective evaluation of four bacterial culture media in the routine laboratory. Clin Microbiol Infect 2011, 17:1528–1530
Funke, G., Monnet, C. deBernardis, A. von Graevenitz, and J. Freney. 1998. Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J. Clin. Microbiol.
Barenfanger, J., C. Drake, and G. Kacich. 1999. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J. Clin. Microbiol.
Cornaglia, G., G. Lo Cascio, L. Masala, The Italian Surveillance Group for Antimicrobial Resistance, and R. Fontana. 2000. Macrolide resistance among S. pneumoniae isolates in Italy, p. 250–254. In S. H. Zinner, L. S. Young, J. F. Acar, and C. Ortiz-Neu (ed.), New considerations for macrolides, azalides, streptogramins, and ketolides. M. Dekker, Inc., New York, N.Y.
Fontana, R., M. Ligozzi, A. Mazzariol, G. Veneri, The Italian Surveillance Group for Antimicrobial Resistance, and G. Cornaglia.1998. Resistance of enterococci to ampicillin and glycopeptide antibiotics in Italy. Clin. Infect.
Murray, B. E. 1990. The life and times of the enterococcus. Clin. Microbiol.
Pfaller, M. A., and L. A. Herwaldt. 1988. Laboratory, clinical, and epidemiological aspects of coagulase-negative staphylococci. Clin. Microbiol. Rev
Woodford, N., A. P. Johnson, D. Morrison, and D. C. E. Speller. 1995. Current perspective on glycopeptide resistance. Clin. Microbiol. Rev.
Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics 40(4):277
Tasina E, Haidich A-B, Kokkali S, Arvanitidou M (2011) Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis 11(11):834–844
Florescu I, Beuran M, Dimov R, Razbadauskas A, Bochan M, Fichev G, Dukart G, Babinchak T, Cooper CA, Ellis-Grosse EJ, Dartois N, Gandjini H et al (2008) Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycinresistant enterococci: a phase 3, multicentre, double- blind, randomized study. J Antimicrob Chemother 62(Suppl 1):i17– i28. doi:
Vasilev K, Reshedko G, Orasan R, Sanchez M, Teras J, Babinchak T, Dukart G, Cooper A, Dartois N, Gandjini H, Orrico R, Ellis-Grosse E et al (2008) A phase 3, open-label, noncomparative study of tigecycline in the treatment of patients with selected serious infections due to resistant Gram-negative organisms including Enterobacter species, Acinetobacter baumannii and Klebsiella pneumoniae. J Antimicrob Chemother 62(Suppl 1):i29–i40. doi:10.1093/jac/dkn249
Gardiner D, Dukart G, Cooper A, Babinchak T (2010) Safety and efficacy of intravenous tigecycline in subjects with secondary bacteremia: pooled results from 8 phase III clinical trials. Clin Infect Dis 50:229–238. doi: 10.1086/648720
Bassetti M, Eckmann C, Bodmann KF, Dupont H, Heizmann WR, Montravers P, Guirao X, Capparella MR, Simoneau D, Sanchez Garcia M (2013) Prescription behaviours for tigecycline in real-life clinical practice from five European observational studies. JAntimicrob Chemother 68(Suppl 2):ii5–ii14. doi:10.1093/jac/dkt140
Montravers P, Bassetti M, Dupont H, Eckmann C, Heizmann WR, Guirao X, Garcia MS, Capparella MR, Simoneau D, Bodmann KF (2013) Efficacy of tigecycline for the treatment of complicated skin and soft-tissue infections in real-life clinical practice from five European observational studies. J Antimicrob Chemother 68(Suppl 2):ii15–ii24. doi: 10.1093/jac/dkt141
Heizmann WR, Dupont H, Montravers P, Guirao X, Eckmann C, Bassetti M, Garcia MS, Capparella MR, Simoneau D, Bodmann KF (2013) Resistance mechanisms and epidemiology of multiresistant pathogens in Europe and efficacy of tigecycline in observational studies. J Antimicrob Chemother 68(Suppl 2):ii45–ii55. doi: 10.1093/jac/dkt144
Guirao X, Sanchez Garcia M, Bassetti M, Bodmann KF, Dupont H, Montravers P, Heizmann WR, Capparella MR, Simoneau D, Eckmann C (2013) Safety and tolerability of tigecycline for the treatment of complicated skin and soft-tissue and intra-abdominal infections: an analysis based on five European observational studies. J Antimicrob Chemother 68(Suppl 2):ii37– ii44. doi: 10.1093/jac/dkt143
Mishra B, Bhujwala RA, Shriniwas. Non-fermenters in human infections. Indian J Med Res 1986;83:561-6.
Schafer P, Fink B, Sandow D, Margull A, Berger I, Frommelt L. Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis. 2008;14:1403–1409. doi: 10.1086/592973. [PubMed] [CrossRef] [Google Scholar]
Barbier F., Andremont A., Wolff M., Bouadma L. (2013). Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr. Opin. Pulm.Med. 19,216–228.doi: 10.1097/ MCP .0b013e32835f27be [PubMed] [CrossRef] [Google Scholar]
Morrissey I., Hackel M., Badal R., Bouchillon S., Hawser S., Biedenbach D. (2013). A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel) 6, 1335–1346. doi: 10.3390/ph6111335, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Pitout J. D., Laupland K. B. (2008). Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8, 159–166. doi: 10.1016/S1473-3099(08)70041-0 [PubMed] [CrossRef] [Google Scholar] [Ref list]
Ramirez M. S., Tolmasky M. E. (2017). Amikacin: uses, resistance, and prospects for inhibition. Molecules 22:2267. doi: 10.3390/molecules22122267, PMID: [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Ref list]
Brusselaers N., Vogelaers D., Blot S. (2011). The rising problem of antimicrobial resistance in the intensive care unit. Ann. Intensive Care 23, 1:47. doi: 10.1186/2110- 5820-1-47 [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Ref list]
Martin S. J., Yost R. J. (2011). Infectious diseases in the critically ill patients. J. Pharm. Pract. 24, 35–43. doi: 10.1177/0897190010388906 [PubMed][CrossRef] [Google Scholar] [Ref list]