EVALUATION OF ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF ETHANOLIC EXTRACTS FROM SELECTED MEDICINAL PLANTS

Authors

  • Dr. Ruchita Shrivastava Visiting Lecturer (JBS), Department of Botany, Govt. Homescience PG Lead College, Narmadapuram(MP)

DOI:

https://doi.org/10.53555/pxsjcb61

Keywords:

Antioxidant Activity, Antimicrobial Activity, Moringa oleifera, Glycyrrhiza glabra, Zingiber officinale

Abstract

The antioxidant and antimicrobial properties of ethanolic extracts from three common plants for their beneficial therapeutics including Moringa oleifera, Glycyrrhiza glabra, and Zingiber officinale. Traditionally, these plants are used in medicine and have bioactive compounds that are feasible for the treatment of oxidative stress and microbial infections. The ethanolic extracts of these plants were used to evaluate antioxidant and antimicrobial activities using standard assay. The anti-oxidant activity was evaluated by DPPH, ABTS and FRAP assays. The antimicrobial activity was tested against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis by agar well diffusion method. The Minimum Inhibitory Concentration (MIC) was determined by broth dilution method. The highest antioxidant and antimicrobial activities as well as the lowest MIC values, especially against Staphylococcus aureus, were exhibited by Moringa oleifera. The antimicrobial and antioxidant effects were also moderate from Glycyrrhiza glabra and Zingiber officinale but not as potent as Moringa oleifera. Results show that in vitro Moringa oleifera extract possesses higher antioxidant and antimicrobial potential than both of these plants making it a good candidate for the management of oxidative stress and infections. Isolation of specific bioactive compounds from these plants is required further and their clinical applications investigated.

References

1. Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants (Basel, Switzerland), 12(17), 3077. https://doi.org/10.3390/plants12173077

2. Amaning Danquah, C., Minkah, P. A. B., Osei Duah Junior, I., Amankwah, K. B., & Somuah, S. O. (2022). Antimicrobial Compounds from Microorganisms. Antibiotics (Basel, Switzerland), 11(3), 285. https://doi.org/10.3390/antibiotics11030285

3. Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., . . . Cho, W. C. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, 552535. https://doi.org/10.3389/fphys.2020.00694

4. Antimicrobials are equally important as antioxidants for controlling infections due to pathogenic microorganisms in parallel. The overuse of antibiotics has caused the world to witness the development of resistant strains of bacteria, viruses and fungi which is no more easy to treat. Therefore, the demand for new antimicrobial agents, especially from natural sources, has increased to combat multidrug resistant pathogens.

5. Ayustaningwarno, F., Anjani, G., Ayu, A. M., & Fogliano, V. (2024). A critical review of Ginger’s (Zingiber officinale) antioxidant, anti-inflammatory, and immunomodulatory activities. Frontiers in Nutrition, 11, 1364836. https://doi.org/10.3389/fnut.2024.1364836

6. Babich, O., Ivanova, S., Ulrikh, E., Popov, A., Larina, V., Frolov, A., & Prosekov, A. (2022). Study of the Chemical Composition and Biologically Active Properties of Glycyrrhiza glabra Extracts. Life, 12(11), 1772. https://doi.org/10.3390/life12111772

7. Chatepa, L. E. C., Mwamatope, B., Chikowe, I., & Masamba, K. G. (2024). Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC complementary medicine and therapies, 24(1), 317. https://doi.org/10.1186/s12906-024-04619-7

8. Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., & Calina, D. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198. https://doi.org/10.3389/fchem.2023.1158198

9. Divya, S., Pandey, V. K., Dixit, R., Rustagi, S., Suthar, T., Atuahene, D., Nagy, V., Ungai, D., Ahmed, A. E., Kovács, B., & Shaikh, A. M. (2023). Exploring the Phytochemical, Pharmacological and Nutritional Properties of Moringa oleifera: A Comprehensive Review. Nutrients, 16(19), 3423. https://doi.org/10.3390/nu16193423

10. Galaboyi, J. Y., Lugard, L., Samaila, D. R., Doka, P. J. S., & Okedo, H. A. (2024). Knowledge on utilization of moringa as a nutrient supplement among people of Gadam community, Kwami local government area of Gombe state, Nigeria. International Journal for Research in Health Sciences and Nursing, 10(2), 1–6. https://doi.org/10.53555/hsn.v10i2.2387

11. Gonfa, Y. H., Tessema, F. B., Bachheti, A., Rai, N., Tadesse, M. G., Nasser Singab, A., Chaubey, K. K., & Bachheti, R. K. (2022). Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Current Research in Biotechnology, 6, 100152. https://doi.org/10.1016/j.crbiot.2023.100152

12. Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants (Basel, Switzerland), 9(8), 681. https://doi.org/10.3390/antiox9080681

13. Kashyap, P., Kumar, S., Riar, C. S., Jindal, N., Baniwal, P., Guiné, R. P. F., Correia, P. M. R., Mehra, R., & Kumar, H. (2022). Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants (Basel, Switzerland), 11(2), 402. https://doi.org/10.3390/antiox11020402

14. Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review. Phytomedicine Plus, 1(2), 100029. https://doi.org/10.1016/j.phyplu.2021.100029

15. Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel, Switzerland), 11(13), 1946. https://doi.org/10.3390/healthcare11131946

16. Shaito, A., Thuan, D. T. B., Phu, H. T., Nguyen, T. H. D., Hasan, H., Halabi, S., Abdelhady, S., Nasrallah, G. K., Eid, A. H., & Pintus, G. (2020). Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Frontiers in pharmacology, 11, 422. https://doi.org/10.3389/fphar.2020.00422

17. Sulieman, A. M. E., Ibrahim, S. M., Alshammari, M., Abdulaziz, F., Idriss, H., Alanazi, N. A. H., Abdallah, E. M., Siddiqui, A. J., Shommo, S. A. M., Jamal, A., & Badraoui, R. (2024). Zingiber officinale Uncovered: Integrating Experimental and Computational Approaches to Antibacterial and Phytochemical Profiling. Pharmaceuticals (Basel, Switzerland), 17(11), 1551. https://doi.org/10.3390/ph17111551

18. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041

19. Wahab, S., Annadurai, S., Abullais, S. S., Das, G., Ahmad, W., Ahmad, M. F., Kandasamy, G., Vasudevan, R., Ali, M. S., & Amir, M. (2021). Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants (Basel, Switzerland), 10(12), 2751. https://doi.org/10.3390/plants10122751

20. Zahra, M., Abrahamse, H., & George, B. P. (2024). Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel, Switzerland), 13(8), 922. https://doi.org/10.3390/antiox13080922

21. Zouine, N., Ghachtouli, N. E., Abed, S. E., & Koraichi, S. I. (2024). A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and prospects. Scientific African, 26, e02395. https://doi.org/10.1016/j.sciaf.2024.e02395

22. Zulhendri, F., Chandrasekaran, K., Kowacz, M., Ravalia, M., Kripal, K., Fearnley, J., & Perera, C. O. (2021). Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods (Basel, Switzerland), 10(6), 1360. https://doi.org/10.3390/foods10061360

Downloads

Published

2024-12-15

How to Cite

EVALUATION OF ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF ETHANOLIC EXTRACTS FROM SELECTED MEDICINAL PLANTS. (2024). EPH-International Journal of Applied Science, 10(4), 1-7. https://doi.org/10.53555/pxsjcb61