THE CHEMISTRY AND PHYSICS OF PHOTONIC MATERIALS: A STUDY ON LIGHT-MATTER INTERACTION FOR ADVANCED OPTICAL DEVICES

Authors

  • Dr. Himanshu Singh Senior Resident, Department of Pharmacology, Institute: Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India

DOI:

https://doi.org/10.53555/8sthvm59

Keywords:

Photonic materials, plasmonic nanoantennas, metasurfaces, epsilon-near-zero materials, optical absorption, spontaneous emission, quantum photonics, optical computing

Abstract

Modern optical technologies heavily rely on photonic materials because they enable light manipulation on nano-sized dimensions. The research analyzes plasmonic nanoantennas together with metasurfaces and epsilon-near-zero (ENZ) materials using chemical and physical principles to understand their structural characteristics and their optical outcomes. Child laboratory synthesis combined with state-of-the-art optical testing equipment and mathematical simulations worked to measure their performance in optic communication streams and image processing and adaptive photonic applications. Several key performance metrics illustrate the potential of plasmonic nanoantennas to enhance spontaneous emission by 150% and the performance capability of metasurfaces to reach an absorption efficiency of 87% while ENZ materials exhibit pronounced nonlinear optical effects. Structural variations in optical devices showed direct relationships with their optical performance according to statistical analysis. Nanoantenna aspect ratios and metasurface nanostructures alongside ENZ material permittivity measurements directly affected light emission and absorption and wavefront modulation respectively. A research assessment conducted among different institutions showed that precise manufacturing methods are essential for enhancing material output. The study demonstrates how photonic materials will power next-generation optical devices which will advance ultrafast optical computing as well as quantum photonics applications and high-resolution imaging. Upcoming research should focus on connecting hybrid nonlinear effects while improving fabrication methods alongside applying machine learning for material enhancement to enhance photonic system capabilities.

References

1. Akselrod, G. M., Argyropoulos, C., Hoang, T. B., Ciracì, C., Fang, C., Huang, J., ... & Mikkelsen, M. H. (2014). Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photonics, 8(11), 835-840.

2. Hoang, T. B., Akselrod, G. M., Argyropoulos, C., Huang, J., Smith, D. R., & Mikkelsen, M. H. (2015). Ultrafast spontaneous emission source using plasmonic nanoantennas. Nature communications, 6(1), 7788.

3. Hoang, T. B., Akselrod, G. M., & Mikkelsen, M. H. (2016). Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano letters, 16(1), 270-275.

4. Stewart, J. W., Vella, J. H., Li, W., Fan, S., & Mikkelsen, M. H. (2020). Ultrafast pyroelectric photodetection with on-chip spectral filters. Nature materials, 19(2), 158-162.

5. Akselrod, G. M., Huang, J., Hoang, T. B., Bowen, P. T., Su, L., Smith, D. R., & Mikkelsen, M. H. (2015). Large‐area metasurface perfect absorbers from visible to near‐infrared. Advanced Materials, 27(48), 8028-8034.

6. Stewart, J. W., Akselrod, G. M., Smith, D. R., & Mikkelsen, M. H. (2017). Toward multispectral imaging with colloidal metasurface pixels. Advanced Materials, 29(6), 1602971.

7. Cruz, D. F., Fontes, C. M., Semeniak, D., Huang, J., Hucknall, A., Chilkoti, A., & Mikkelsen, M. H. (2020). Ultrabright fluorescence readout of an inkjet-printed immunoassay using plasmonic nanogap cavities. Nano letters, 20(6), 4330-4336.

8. Semeniak, D., Cruz, D. F., Chilkoti, A., & Mikkelsen, M. H. (2023). Plasmonic fluorescence enhancement in diagnostics for clinical tests at point‐of‐care: A review of recent technologies. Advanced Materials, 35(34), 2107986.

9. Khlopin, D. (2017). Aluminum plasmonics for optical applications (Doctoral dissertation, Université de Technologie de Troyes).

10. Naik, G. V., Shalaev, V. M., & Boltasseva, A. (2013). Alternative plasmonic materials: beyond gold and silver. Advanced materials, 25(24), 3264-3294.

11. Guler, U., Boltasseva, A., & Shalaev, V. M. (2014). Refractory plasmonics. Science, 344(6181), 263-264.

12. Guler, U., Shalaev, V. M., & Boltasseva, A. (2015). Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today, 18(4), 227-237.

13. Guler, U., Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2015). Plasmonics on the slope of enlightenment: the role of transition metal nitrides. Faraday discussions, 178, 71-86.

14. Boltasseva, A., & Shalaev, V. M. (2015). All that glitters need not be gold. Science, 347(6228), 1308-1310.

15. Naldoni, A., Guler, U., Wang, Z., Marelli, M., Malara, F., Meng, X., ... & Shalaev, V. M. (2017). Broadband hot‐electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 5(15), 1601031.

16. Faccio, D. F. A., Caspani, L., Clerici, M., & Ferrera, M. (2016). Enhanced nonlinear refractive index in epsilon-near-zero materials.

17. Clerici, M., Kinsey, N., DeVault, C., Kim, J., Carnemolla, E. G., Caspani, L., ... & Ferrera, M. (2017). Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nature communications, 8(1), 15829.

18. Vezzoli, S., Bruno, V., DeVault, C., Roger, T., Shalaev, V. M., Boltasseva, A., ... & Faccio, D. (2018). Optical time reversal from time-dependent epsilon-near-zero media. Physical review letters, 120(4), 043902.

19. Bruno, V., DeVault, C., Vezzoli, S., Kudyshev, Z., Huq, T., Mignuzzi, S., ... & Shalaev, V. M. (2020). Negative refraction in time-varying strongly coupled plasmonic-antenna–epsilon-near-zero systems. Physical review letters, 124(4), 043902.

20. Kinsey, N., DeVault, C., Boltasseva, A., & Shalaev, V. M. (2019). Near-zero-index materials for photonics. Nature Reviews Materials, 4(12), 742-760.

Downloads

Published

2024-02-15

How to Cite

THE CHEMISTRY AND PHYSICS OF PHOTONIC MATERIALS: A STUDY ON LIGHT-MATTER INTERACTION FOR ADVANCED OPTICAL DEVICES. (2024). EPH-International Journal of Applied Science, 10(2), 8-15. https://doi.org/10.53555/8sthvm59