FORMULATION AND CHARACTERIZATION OF HARD, GELATIN‑LIKE CAPSULES USING A FOUR-POLYMER PLANT-BASED SYSTEM

Authors

  • Ajay Pal Singh Dept. of Chemical Engineering, SunRise University, Alwar, Rajasthan
  • Dr. Chander Shekar Dept. of Chemical Engineering, SunRise University, Alwar, Rajasthan

DOI:

https://doi.org/10.53555/zwx1yn84

Keywords:

Plant-based capsules, Corn starch–agar–HPMC composite, Gelation kinetics (G′/G″), Rheology and viscosity modeling, Drying kinetics and mechanical hardness, API uniformity and dissolution

Abstract

This study reports the development and characterization of hard, gelatin-like capsules using a novel four-polymer plant-based system comprising corn starch (CS), agar-agar (AA), sodium alginate (SA), and hydroxypropyl methylcellulose (HPMC), with glycerin as a plasticizer. The polymer blend was optimized to achieve controlled viscosity, predictable gelation, and uniform capsule wall formation. Rheological analysis demonstrated shear-thinning behavior suitable for dip-molding, and oscillatory measurements identified the G′/G″ crossover point, confirming a robust sol–gel transition. Drying kinetics followed a first-order exponential decay, yielding capsules with high mechanical hardness and low moisture content. API incorporation and content uniformity analysis showed RSD below 6%, while dissolution studies indicated controlled, diffusion-driven release consistent with Higuchi and first-order models. Stability modeling using the Arrhenius equation predicted reliable long-term shelf life under ambient conditions. Compared with previously reported single- or dual-polymer systems, the proposed four-polymer capsules demonstrated superior mechanical strength, moisture control, release behavior, and stability, highlighting their potential as a plant-based alternative to gelatin capsules.

References

1. Allen, L., & Ansel, H. (2014). Ansel’s pharmaceutical dosage forms and drug delivery systems. Philadelphia: Lippincott Williams & Wilkins.

2. Aulton, M., & Taylor, K. (2013). Pharmaceutics: The design and manufacture of medicines (4th ed.). Edinburgh: Churchill Livingstone.

3. Armstrong, N. A., James, K. C., Collett, D., & Thomas, M. (2005). Solute migration from oily solutions into glycerol–gelatin mixtures. Drug Development and Industrial Pharmacy, 31(3), 59–68.

4. Bhawna, B., & Agrawal, S. S. (2022). Pharmaceutical technology: Capsules. International Journal of Pharmaceutical Research and Applications, 7(3), 792–808.

5. Chan, Y. L., Lim, S. K., & Tan, J. H. (2020). Alginate-based polysaccharide blends for controlled hydration and release. Journal of Applied Polymer Science, 137(12), 48567. https://doi.org/10.1002/app.48567

6. Chen, L., Wang, X., & Zhao, H. (2021). Starch derivatives in capsule wall strengthening: Hydration kinetics study. Carbohydrate Polymers, 256, 117540. https://doi.org/10.1016/j.carbpol.2020.117540

7. Chen, Y., Zhao, H., Liu, X., Li, Z., Liu, B., Wu, J., … Li, Y. (2016). TEMPO-oxidized konjac glucomannan as appliance for the preparation of hard capsules. Carbohydrate Polymers, 143, 262–269.

8. Choudhury, A. R. (2019). Synthesis and rheological characterization of a novel thermostable quick setting composite hydrogel of gellan and pullulan. International Journal of Biological Macromolecules, 125, 979–988.

9. Ding, Y., Jiang, F., Chen, L., Lyu, W., Chi, Z., Liu, C., & Chi, Z. (2020). An alternative hard capsule prepared with the high molecular weight pullulan and gellan: Processing, characterization, and in vitro drug release. Carbohydrate Polymers, 237, 116172.

10. Elmarhoum, S., & Ako, K. (2022). Rheological study of α-and κ-carrageenan expansion in solution as effects of the position of the sulfate group. International Journal of Biological Macromolecules, 223, 1138–1144.

11. Emeje, M., Kunle, O. F., & Akinlade, A. (2021). Stability and dissolution performance of HPMC capsules. Pharmaceutical Development and Technology, 26(8), 920–928. https://doi.org/10.1080/10837450.2021.1912334

12. Fischer, G. (2015). Gelatin capsules for the controlled release of the active agent, and process for their preparation. EP 0, 3,240–281.

13. Felton, L. (2012). Remington essentials of pharmaceutics. UK: Pharmaceutical Press.

14. Gao, H., & Liu, J. (2021). Stability prediction of polymer-coated drug forms via Arrhenius modeling. Journal of Drug Delivery Science and Technology, 64, 102599. https://doi.org/10.1016/j.jddst.2021.102599

15. Gullapalli, R. P., & Mazzitelli, C. L. (2017). Gelatin and non-gelatin capsule dosage forms. Journal of Pharmaceutical Sciences, 106(6), 1453–1465.

16. He, H., Ye, J., Zhang, X., Huang, Y., Li, X., & Xiao, M. (2017). κ-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohydrate Polymers, 175, 417–424.

17. Hoag, S. (2017). Capsules dosage form: Formulation and manufacturing considerations. In Developing solid oral dosage forms – Pharmaceutical theory and practice (2nd ed., pp. 723–747). UK: Elsevier.

18. Huang, Y., & Li, Q. (2022). Dissolution modeling of polysaccharide drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 171, 82–92. https://doi.org/10.1016/j.ejpb.2022.03.011

19. Liu, N. N., Chi, Z., Wang, Q. Q., Hong, J., Liu, G. L., Hu, Z., & Chi, Z. M. (2017). Simultaneous production of both high molecular weight pullulan and oligosaccharides by Aureobasidium melanogenum P16 isolated from a mangrove ecosystem. International Journal of Biological Macromolecules, 102, 1016–1024.

20. Patel, N., & Shah, R. (2022). Rheology modeling of polysaccharide blends for moldable pharmaceutical forms. Journal of Pharmaceutical Sciences, 111(3), 987–996. https://doi.org/10.1016/j.xphs.2021.11.010

21. Qiao, D., Li, H., Jiang, F., Zhao, S., Chen, S., & Zhang, B. (2023). Incorporation of κ-carrageenan improves the practical features of agar/konjac glucomannan/κ-carrageenan ternary system. Food Science and Human Wellness, 12(2), 512–519.

22. Rang, H. P., Dale, M. M., Ritter, J. M., Flower, R. J., & Henderson, G. (2011). What is pharmacology. In Rang & Dale's pharmacology (7th ed., pp. 159–167). Edinburgh: Churchill Livingstone.

23. Roy, P., & Saha, A. (2022). Drying kinetics of hydrogel films for controlled moisture content. Journal of Applied Polymer Science, 139(5), 51234. https://doi.org/10.1002/app.51234

24. Sakata, Y., & Otsuka, M. (2009). Evaluation of relationship between molecular behavior and mechanical strength of pullulan films. International Journal of Pharmaceutics, 374(1–2), 33–38.

25. Shunji, N. (2002). Advantages to HPMC capsules: A new generation’s drug delivery technology.

26. Singh, R. S., Kaur, N., D. Singh, & Purewal, S. S. (2023). Pullulan in pharmaceutical and cosmeceutical formulations: A review. International Journal of Biological Macromolecules, 123, 353.

27. Singh, R. S., Kaur, N., Hassan, M., & Kennedy, J. F. (2021). Pullulan in biomedical research and development-A review. International Journal of Biological Macromolecules, 166, 694–706.

28. Verma, S., & Soni, P. (2022). Content uniformity evaluation in plant-based capsules. International Journal of Pharmaceutics, 624, 121947. https://doi.org/10.1016/j.ijpharm.2022.121947

29. Wu, J., Zhong, F., Li, Y., Shoemaker, C. F., & Xia, W. (2013). Preparation and characterization of pullulan–chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocolloids, 30(1), 82–91.

30. Zhang, Y., Yang, N., Zhang, Y., Hou, J., Han, H., Jin, Z., & Guo, S. (2020). Effects of κ-carrageenan on pullulan's rheological and texture properties as well as pullulan hard capsule performances. Carbohydrate Polymers, 238, 116190.

Downloads

Published

2022-12-14

How to Cite

FORMULATION AND CHARACTERIZATION OF HARD, GELATIN‑LIKE CAPSULES USING A FOUR-POLYMER PLANT-BASED SYSTEM. (2022). EPH-International Journal of Applied Science, 8(4), 13-23. https://doi.org/10.53555/zwx1yn84