SEEBECK COEFFICIENT OF TERNARY SEMICONDUCTING VANADIUM–COBALT– TELLURITE GLASSES

Authors

  • D. M. Tawati Department of Physics, Faculty of Science, University of Benghazi, Benghazi–Libya
  • Aghzeila B. Mohamed Department of Physics, Faculty of Science, University of Benghazi, Benghazi–Libya
  • N. A. Hussein Department of Physics, Faculty of Science, University of Benghazi, Benghazi–Libya
  • H. A. saltani Department of Physics, Faculty of Science, University of Benghazi, Benghazi–Libya
  • A. K. Arof Department of Physics, Faculty of science, University of Malaya, 50603 KL – Malaysia

DOI:

https://doi.org/10.53555/eijas.v7i3.59

Keywords:

Seebeck coefficient, Heikes formula, TEP

Abstract

The Seebeck coefficient, S, of semiconducting V2O5–CoO–TeO2 bulk glasses have been measured in the temperature range 300 – 506 K. The glass samples were prepared by the press–quenching method from glass melt. The thermoelectric power, TEP, data revealed that all glasses were n–type semiconductors with Seebeck coefficient in the range from –602 to –790 μV/k. The investigations provide information on the polaron formation and the disorder energy due to random fields. The Seebeck coefficient was found to be dependent on the CoO content and the temperature independent of TEP for all glass compositions. TEP experimental results were adequately explained by Heikes’ formula.

References

. Mott, N. F. (1968). Conduction in glasses containing transition metal ions. J. Non–Cryst. Solids, 1:1–17.

. Austin, I. G. and Mott, N. F. (1969). Polarons in crystalline and non–crystalline materials. Adv. Phys.,18: 41–102.

. Allersma, T. and Mackenzie, J. D. (1967). Seebeck coefficient of semiconducting oxide glasses. J. Chem. Phys., 47 (4): 1406–1409.

. Flynn, B. W. (1977). The electrical and optical properties of vanadium tellurite glasses. PhD Thesis University of Edinburgh, Scotland.

. Mansingh, A. and Dhawan, A. (1978). Thermoelectric Power in transition metal oxide glasses. J. Phys. C: Solid State Phys., 11: 3439–3445.

. Mandal, S., Banerjee, D., Bhattacharya, R. N. and Ghosh, A. (1996). Thermoelectric power of unconventional lead vanadate glasses. J. Phys: Condens. Matter. 8: 2865– 2868.

. Ghosh, A. (1989). Temperature–dependent thermoelectric power of semiconducting bismuth–vandate glasses. J. Appl. Phys., 65 (1): 227–230.

. Mori, H. and Sakata, H. (1996). Seebeck coefficient of V2O5 – R2O3 – TeO2 (R=Sb or Bi) glasses. J. Mater. Sci., 31: 1621–1624.

. Sega, K., Kassai, H., and Sakata, H. (1998). Electrical conduction in V2O5–NiO–TeO2 glasses. Mater. Chem. Phys., 53: 28–33.

. Sakata, H. and Sega, K. (1999). Multiphonon tunneling conduction in vanadium–cobalt– tellurite glasses. Phys. Rev. B, 60 (5): 3230–3236.

. Tawati, D. M. and Basha, M. J. (2003). Thermoelectric power of semiconducting cobalt–phosphate glasses. J. Solid st. and Technol. Letters, 10 (2): 165–170.

. Tawati, D. M. and Basha, M. J. (2004). Thermoelectric power (TEP) of semiconducting CoO–NiO–P2O5 glasses. Ceram. Int., 30: 1737–1739.

. Souri, D. (2008). Seebeck coefficient of tellurite–vanadate glasses containing molybdenum. J. Phys. D: Appl. Phys., 41: 1–3.

. Jianxiao, Xu. (2008). Thermoelectric properties of transition metal oxides and thallium main group chalcogenides. PhD ThesisUniversity of Waterloo, Ontario, Canada. 174

. Tawati, D. M., Basha, M. J. and Arof, A. K. (2010). Thermoelectric power (TEP) of semiconducting Nickel–Phosphate glasses. AIP Conf. Proceeding 1250 PERFIK 2009: 93–96.

. Heikes, R. R. and Ure, R. W. (1961). Thermoelectricity (Interscience, New York) p. 81.

. Cohen, M. H. (1970). Review of the theory of amorphous semiconductors. J. Non– Cryst. Solids, 4: 391–409.

. Tawati, D. M. (2004).Thermoelectric power and dc conductivity of cobalt phosphate and nickel phosphate glasses. PhD Thesis University of Sains Malaysia, Penang, Malaysia.

. Sewell, G. L. (1963). Model of thermally activated hopping motion in solids. Phys. Rev., 129 (2): 597–608.

. Appel, J. (1968). Polarons. Solid State Phys., 21: 193.

. Klinger, M. I. (1968). Problems of polaron transport theory in semiconductors. Rep. Prog. Phys., 30: 225.

. Lynch, G. F., Sayer, M., Segel, S. L. and Rosenblatt, G. (1971). Electron and nuclear magnetic resonance in semiconducting phosphate glasses. J. Appl. Phys., 42 (7): 2587– 2591.

. Pal, M., Hirota, K., Tsujigami, Y. and Sakata, H. (2001). Structural and electrical properties of MoO3 – TeO2 glasses. J. Phys. D: Appl. Phys., 34 (4): 459.

Downloads

Published

2021-09-27