IMPLICATION OF NANOTECHNOLOGY IN FOOD INDUSTRY
DOI:
https://doi.org/10.53555/eijas.v9i1.151Keywords:
Nanoparticle, Food processing, Nanotechnology, Food packaging, Nanocarriers, Encapsulation, Nano emulsionAbstract
The rapid and broad adoption of nanotechnology in multiple industries is due to its numerous uses in our daily lives. Food and nutrition delivery is one of the most affected sectors by nanotechnology in all aspects, impacting even the structure of food itself. Whether it's farming, packaged food, or microbial contamination prevention, the large food sectors have seen substantial changes as a result of nanotechnology. This review discusses the implications of nanotechnology on functional foods and the effects of antimicrobial nano- structured materials on bacteria. It also emphasises the properties of food nanotechnology, as well as its current and potential future food science applications. The possibilities for nanomaterials to use in the food business to provide consumers with secure, decontaminated food and to raise food acknowledgement due to improved functional properties.
References
Alavi, S. E., Mansouri, H., Esfahani, M. K. M., Movahedi, F., Akbarzadeh, A., & Chiani, M. (2014). Archaeosome: As new drug carrier for delivery of paclitaxel to breast cancer. Indian Journal of Clinical Biochemistry, 29(2), 150–153. https://doi.org/10.1007/S12291-013-0305-4
Arvanitoyannis, I., Nakayama, A., & Aiba, S. I. (1998). Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 36(2–3), 105–119. https://doi.org/10.1016/S0144-8617(98)00017-4
Asadi, G., & Mousavi, S. M. (2006). Application of Nanotechnology in Food Packaging. 739. https://doi.org/10.1051/IUFOST:20060739
Athinarayanan, J., Periasamy, V. S., Alsaif, M. A., Al-Warthan, A. A., & Alshatwi, A. A. (2014). Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biology and Toxicology, 30(2), 89–100. https://doi.org/10.1007/S10565-014-9271-8
Boonme, P., Junyaprasert, V. B., Suksawad, N., & Songkro, S. (2009). Microemulsions and nanoemulsions: Novel vehicles for whitening cosmeceuticals. Journal of Biomedical Nanotechnology, 5(4), 373–383. https://doi.org/10.1166/JBN.2009.1046
Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44(4), 223–237. https://doi.org/10.1080/10408690490464276
Chasing Nanocomposites | Plastics Technology. (n.d.). Retrieved October 4, 2022, from https://www.ptonline.com/articles/chasing-nanocomposites
Chellaram, C., Murugaboopathi, G., John, A. A., Sivakumar, R., Ganesan, S., Krithika, S., & Priya, G. (2014). Significance of Nanotechnology in Food Industry. APCBEE Procedia, 8(Caas 2013), 109–113. https://doi.org/10.1016/j.apcbee.2014.03.010
da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284–292. https://doi.org/10.1016/J.TIFS.2010.03.003
Deamer, D. W. (1978). PREPARATION AND PROPERTIES OF ETHER-INJECTION LIPOSOMES *. Annals of the New York Academy of Sciences, 308(1), 250–258. https://doi.org/10.1111/J.1749-6632.1978.TB22027.X
D’Emanuele, A., & Attwood, D. (2005). Dendrimer–drug interactions. Advanced Drug Delivery Reviews, 57(15), 2147–2162. https://doi.org/10.1016/J.ADDR.2005.09.012
Dendrimers and dendrons : concepts, syntheses, applications | WorldCat.org. (n.d.). Retrieved October 4, 2022, from http://www.worldcat.org/title/46601245
Dua, J. S., Rana, A. C., & Bhandari, A. K. (n.d.). International Journal of Pharmaceutical Studies and Research LIPOSOME: METHODS OF PREPARATION AND APPLICATIONS.
Dudefoi, W., Terrisse, H., Richard-Plouet, M., Gautron, E., Popa, F., Humbert, B., & Ropers, M. H. (2017). Criteria to define a more relevant reference sample of titanium dioxide in the context of food: a multiscale approach. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 34(5), 653–665. https://doi.org/10.1080/19440049.2017.1284346
Duncan, R., & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57(15), 2215–2237. https://doi.org/10.1016/J.ADDR.2005.09.019
Duncan, T. v. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. https://doi.org/10.1016/J.JCIS.2011.07.017
Dupas, C. (Claire), Houdy, P. (Philippe), Lahmani, M. (Marcel), & European Materials Research Society. (2007). Nanoscience : nanotechnologies and nanophysics. 823.
e Development of nanotechnology and its application in active and... | Download Scientific Diagram. (n.d.). Retrieved October 4, 2022, from https://www.researchgate.net/figure/e-Development-of-nanotechnology-and-its-application-in-active-and-intelligent-packaging_fig1_305397114
Estevinho, B. N., & Rocha, F. (2017). A Key for the Future of the Flavors in Food Industry: Nanoencapsulation and Microencapsulation. Nanotechnology Applications in Food: Flavor, Stability, Nutrition and Safety, 1–19. https://doi.org/10.1016/B978-0-12-811942-6.00001-7
Ezzati Nazhad Dolatabadi, J., Omidi, Y., & Losic, D. (2011). Carbon Nanotubes as an Advanced Drug and Gene Delivery Nanosystem. Current Nanoscience, 7(3), 297–314. https://doi.org/10.2174/157341311795542444
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Undefined, 23(1), 13–27. https://doi.org/10.1016/J.TIFS.2011.08.003
Fleddermann, J., Diamanti, E., Azinas, S., Košutić, M., Dähne, L., Estrela-Lopis, I., Amacker, M., Donath, E., & Moya, S. E. (2016). Virosome engineering of colloidal particles and surfaces: bioinspired fusion to supported lipid layers. Nanoscale, 8(15), 7933–7941. https://doi.org/10.1039/C5NR08169F
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://www.academia.edu/15161797/Applications_of_spray_drying_in_microencapsulation_of_food_ingredients_An_overview
Home | National Nanotechnology Initiative. (n.d.). Retrieved September 1, 2022, from https://www.nano.gov/
Hulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology: History and future. Human and Experimental Toxicology, 34(12), 1318–1321. https://doi.org/10.1177/0960327115603588
Jaafar-Maalej, C., Diab, R., Andrieu, V., Elaissari, A., & Fessi, H. (2010). Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. Journal of Liposome Research, 20(3), 228–243. https://doi.org/10.3109/08982100903347923
Jagtiani, E. (2022). Advancements in nanotechnology for food science and industry. Food Frontiers, 3(1), 56–82. https://doi.org/10.1002/FFT2.104
Jung, J., & Perrut, M. (2001). Particle design using supercritical fluids: Literature and patent survey. Journal of Supercritical Fluids, 20, 179–219. www.elsevier.com/locate/supflu
Keservani, R. K., Sharma, A. K., & Kesharwani, R. K. (2017). Carbon Nanotubes Used as Nanocarriers in Drug and Biomolecule Delivery. 163–212. https://doi.org/10.1201/9781315225371-6
Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611–617. https://doi.org/10.1016/J.TIFS.2011.01.007
Lane, K. E., Derbyshire, E. J., Smith, C. J., Mahadevan, K., & Li, W. (2013). Sensory evaluation of a yogurt drink containing an omega-3 nanoemulsion with enhanced bioavailability. Proceedings of the Nutrition Society, 72(OCE2). https://doi.org/10.1017/S0029665113001109
Lee, W. H., Loo, C. Y., Traini, D., & Young, P. M. (2015). Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opinion on Drug Delivery, 12(6), 1009–1026. https://doi.org/10.1517/17425247.2015.1039509
Lesoin, L., Crampon, C., Boutin, O., & Badens, E. (2011). Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. Journal of Supercritical Fluids, 57(2), 162–174. https://doi.org/10.1016/J.SUPFLU.2011.01.006
Li, W. J., & Tuan, R. S. (2005). Polymeric Scaffolds for Cartilage Tissue Engineering. Macromolecular Symposia, 227(1), 65–76. https://doi.org/10.1002/MASY.200550906
Lin, J., Tang, Q., Hu, D., Sun, X., Li, Q., & Wu, J. (2009). Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346(1–3), 177–183. https://doi.org/10.1016/J.COLSURFA.2009.06.011
Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. v, … فاطمی, ح. (2001). Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir, 17(13), 3898–3901. https://doi.org/10.2/JQUERY.MIN.JS
McClements, D. J., & Rao, J. (2011). Food-Grade nanoemulsions: Formulation, fabrication, properties, performance, Biological fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558
Merino, M., Zalba, S., & Garrido, M. J. (2018). Immunoliposomes in clinical oncology: State of the art and future perspectives. Undefined, 275, 162–176. https://doi.org/10.1016/J.JCONREL.2018.02.015
Meziani, M. J., Pathak, P., Hurezeanu, R., Thies, M. C., Enick, R. M., & Sun, Y. P. (2004). Supercritical-Fluid Processing Technique for Nanoscale Polymer Particles. Angewandte Chemie International Edition, 43(6), 704–707. https://doi.org/10.1002/ANIE.200352834
Mineart, K. P., Venkataraman, S., Yang, Y. Y., Hedrick, J. L., & Prabhu, V. M. (2018). Fabrication and Characterization of Hybrid Stealth Liposomes. Macromolecules, 51(8), 3184. https://doi.org/10.1021/ACS.MACROMOL.8B00361
Mishra, B., Patel, B. B., & Tiwari, S. (2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 9–24. https://doi.org/10.1016/J.NANO.2009.04.008
Mo, D., Hu, L., Zeng, G., Chen, G., Wan, J., Yu, Z., Huang, Z., He, K., Zhang, C., & Cheng, M. (2017). Cadmium-containing quantum dots: properties, applications, and toxicity. Applied Microbiology and Biotechnology, 101(7), 2713–2733. https://doi.org/10.1007/S00253-017-8140-9
Neubert, R. H. H. (2011). Potentials of new nanocarriers for dermal and transdermal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 77(1), 1–2. https://doi.org/10.1016/J.EJPB.2010.11.003
Newkome, G. R., Moorefield, C. N., & Vögtle, F. (2001). Dendrimers and Dendrons. Dendrimers and Dendrons. https://doi.org/10.1002/3527600612
Oehlke, K., Adamiuk, M., Behsnilian, D., Gräf, V., Mayer-Miebach, E., Walz, E., & Greiner, R. (2014). Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: a review of the existing evidence. Food & Function, 5(7), 1341–1359. https://doi.org/10.1039/C3FO60067J
Otles, S., & Yalcin, B. (2010). Nano-biosensors as new tool for detection of food quality and safety.
Pachioni-Vasconcelos, J. D. A., Lopes, A. M., Apolinário, A. C., Valenzuela-Oses, J. K., Costa, J. S. R., Nascimento, L. D. O., Pessoa, A., Barbosa, L. R. S., & Rangel-Yagui, C. D. O. (2016). Nanostructures for protein drug delivery. Biomaterials Science, 4(2), 205–218. https://doi.org/10.1039/C5BM00360A
[PDF] New and Emerging Applications of Nanotechnology in our Food Supply - Free Download PDF. (n.d.). Retrieved October 4, 2022, from https://silo.tips/download/new-and-emerging-applications-of-nanotechnology-in-our-food-supply
Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 50(1), 27–46. https://doi.org/10.1016/S0939-6411(00)00090-4
Peters, R., Kramer, E., Oomen, A. G., Herrera Rivera, Z. E., Oegema, G., Tromp, P. C., Fokkink, R., Rietveld, A., Marvin, H. J. P., Weigel, S., Peijnenburg, A. A. C. M., & Bouwmeester, H. (2012). Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano, 6(3), 2441–2451. https://doi.org/10.1021/NN204728K
Pons, M., Foradada, M., & Estelrich, J. (1993). Liposomes obtained by the ethanol injection method. International Journal of Pharmaceutics, 95(1–3), 51–56. https://doi.org/10.1016/0378-5173(93)90389-W
Qu, W., Zuo, W., Li, N., Hou, Y., Song, Z., Gou, G., & Yang, J. (2017). Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. Http://Dx.Doi.Org/10.1080/1061186X.2017.1323334, 25(8), 661–672. https://doi.org/10.1080/1061186X.2017.1323334
Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7 - PubMed. (n.d.). Retrieved October 4, 2022, from https://pubmed.ncbi.nlm.nih.gov/15307792/
Samad, A., Sultana, Y., & Aqil, M. (2007). Liposomal drug delivery systems: an update review. Current Drug Delivery, 4(4), 297–305. https://doi.org/10.2174/156720107782151269
Saravanan, S., Chawla, A., Vairamani, M., Sastry, T. P., Subramanian, K. S., & Selvamurugan, N. (2017). Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 104(Pt B), 1975–1985. https://doi.org/10.1016/J.IJBIOMAC.2017.01.034
Serdaroğlu, M., Öztürk, B., & Kara, A. (2015). An Overview of Food Emulsions: Description, Classification and Recent Potential Applications. Turkish Journal of Agriculture - Food Science and Technology, 3(6), 430. https://doi.org/10.24925/TURJAF.V3I6.430-438.336
Shi, J., Huang, H., Stratton, Z., Huang, Y., & Huang, T. J. (2009). Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 9(23), 3354–3359. https://doi.org/10.1039/B915113C
Shi, J., Mao, X., Ahmed, D., Colletti, A., & Huang, T. J. (2008). Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip, 8(2), 221–223. https://doi.org/10.1039/B716321E
Silva, H. D., Cerqueira, M. Â., & Vicente, A. A. (2011). Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology 2011 5:3, 5(3), 854–867. https://doi.org/10.1007/S11947-011-0683-7
Song, S. H., Lee, C. K., Kim, T. J., Shin, I. C., Jun, S. C., & Jung, H. il. (2010). A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluidics and Nanofluidics, 9(2–3), 533–540. https://doi.org/10.1007/S10404-010-0570-Y
Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318. https://doi.org/10.1016/J.CIS.2003.10.023
U.S. FDA Color Additive Requirements - Registrar. (n.d.). Retrieved October 4, 2022, from https://www.registrarcorp.com/fda-color-additive/?lead_source=Google%20Ad&utm_source=google&utm_medium=cpc&utm_term=fda%20color%20certification&utm_content=34518103178&utm_campaign=651769089&matchtype=p&device=c&gclid=CjwKCAjws--ZBhAXEiwAv-RNL1qKtyYV-rfEcud_KAHvATiWIkV75qDRhluR8TARRq_baHy_pETDLRoCCP8QAvD_BwE
Valdés, M. G., González, A. C. V., Calzón, J. A. G., & Díaz-García, M. E. (2009). Analytical nanotechnology for food analysis. Undefined, 166(1–2), 1–19. https://doi.org/10.1007/S00604-009-0165-Z
Wang, T., Soyama, S., & Luo, Y. (2016). Development of a novel functional drink from all natural ingredients using nanotechnology. LWT, 73, 458–466. https://doi.org/10.1016/J.LWT.2016.06.050
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242–2250. https://doi.org/10.1021/ES204168D
WHO | Food Safety Collaborative Platform. (n.d.). Retrieved October 4, 2022, from https://apps.who.int/foscollab
Xiao, Y. Y., Gong, X. L., Kang, Y., Jiang, Z. C., Zhang, S., & Li, B. J. (2016). Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chemical Communications, 52(70), 10609–10612. https://doi.org/10.1039/C6CC03587F
Yu, H., Park, J. Y., Kwon, C. W., Hong, S. C., Park, K. M., & Chang, P. S. (2018a). An overview of nanotechnology in food science: Preparative methods, practical applications, and safety. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/5427978
Yu, H., Park, J.-Y., Kwon, C. W., Hong, S.-C., Park, K.-M., & Chang, P.-S. (2018b). An Overview of Nanotechnology in Food Science: Preparative Methods, Practical Applications, and Safety. Journal of Chemistry, 2018. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=20909063&v=2.1&it=r&id=GALE%7CA587655623&sid=googleScholar&linkaccess=fulltext
Downloads
Published
Issue
Section
License
Copyright (c) 2023 EPH - International Journal of Applied Science
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.