COLD PLASMA TECHNIQUE ITS CURRENT STATUS, APPLICATION AND FUTURE TRENDS IN FOOD INDUSTRY
DOI:
https://doi.org/10.53555/eijas.v9i1.152Keywords:
Cold Plasma, Food processing sectors, cold atmospheric plasma (CAP) therapyAbstract
Cold plasma has the ability to inactivate germs in the food processing sector. Cold plasma's action mechanisms, as well as its flexibility as a stand-alone or in conjunction with other technologies, makes it a powerful instrument looking forward to continuing innovative ideas. Irving Langmuir first described the state of matter as having nearly equal amounts of ions and electrons in the ionised gas at the electrodes. Since the 1970s, cold plasma treatment has been employed in semiconductor materials. Plasma is the fourth phase of matter, advancing from solid to liquid, then liquid to gas, and finally plasma. Cold plasmas have been produced using plasma technology in sealed plastic containers-in-package. Cold plasma is employed in sectors such as surface treatment, medical equipment sterilisation, and food safety. There are three main cold plasma technology designs being used for food sterilisation. Remote therapy, direct treatment, and close proximity to an electrode are the most common approaches. Plasma has received widespread application in the food sector during the last decade. DBD, Plasma jet, Corona plasma discharge, radio frequency plasma, microwave plasma are some of the techniques that is used in cold plasma delivery according to recent researches. Food processing sectors have been concentrating on energy use and energy savings during the last few years. Plasma processes provide the following advantages: high reliability at cold temperatures, precise plasma creation tailored to the intended application, minimal effect on the internal product matrix, no wastes, and low resource consumption. Cold Plasma is becoming more widely acknowledged as a viable non-thermal technique that can increase food safety with no impact on food quality. The procedure for obtaining regulatory clearance for novel food technology is governed by the nation's legal framework, and requires further study in system design.
References
Abdelillah Ali Elhussein, E., Şahin, S., & Bayazit, Ş. S. (2018). Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. Journal of Molecular Liquids, 255, 10–17. https://doi.org/10.1016/J.MOLLIQ.2018.01.165
Andrasch, M., Stachowiak, J., Schlüter, O., Schnabel, U., & Ehlbeck, J. (2017). Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment. Food Packaging and Shelf Life, 14, 40–45. https://doi.org/10.1016/J.FPSL.2017.08.007
Attri, P., Kumar, N., Park, J. H., Yadav, D. K., Choi, S., Uhm, H. S., Kim, I. T., Choi, E. H., & Lee, W. (2015). Influence of reactive species on the modification of biomolecules generated from the soft plasma. Scientific Reports 2015 5:1, 5(1), 1–12. https://doi.org/10.1038/srep08221
Bai, Y., Chen, J., Mu, H., Zhang, C., & Li, B. (2009). Reduction of dichlorvos and omethoate residues by O2 plasma treatment. Undefined, 57(14), 6238–6245. https://doi.org/10.1021/JF900995D
Bai, Y., Chen, J., Yang, Y., Guo, L., & Zhang, C. (2010). Degradation of organophosphorus pesticide induced by oxygen plasma: Effects of operating parameters and reaction mechanisms. Chemosphere, 81(3), 408–414. https://doi.org/10.1016/J.CHEMOSPHERE.2010.06.071
Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018a). The Potential of Cold Plasma for Safe and Sustainable Food Production. In Trends in Biotechnology (Vol. 36, Issue 6, pp. 615–626). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2017.11.001
Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018b). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615–626. https://doi.org/10.1016/j.tibtech.2017.11.001
Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., & Gilmore, B. F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123(2), 308–324. https://doi.org/10.1111/JAM.13429
Boye, J. I. (2012). Food allergies in developing and emerging economies: need for comprehensive data on prevalence rates. Clinical and Translational Allergy, 2(1), 1–9. https://doi.org/10.1186/2045-7022-2-25
Bußler, S., Ehlbeck, J., & Schlüter, O. K. (2017a). Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science and Emerging Technologies, 40, 78–86. https://doi.org/10.1016/J.IFSET.2016.05.007
Bußler, S., Ehlbeck, J., & Schlüter, O. K. (2017b). Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science & Emerging Technologies, 40, 78–86. https://doi.org/10.1016/J.IFSET.2016.05.007
Chizoba Ekezie, F. G., Sun, D. W., & Cheng, J. H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Undefined, 69, 46–58. https://doi.org/10.1016/J.TIFS.2017.08.007
COATING PLASMA INNOVATION - Coating Plasma Innovation. (n.d.). Retrieved August 28, 2022, from https://www.cpi-plasma.com/
Cold Plasma in Food and Agriculture - 1st Edition. (n.d.). Retrieved August 23, 2022, from https://www.elsevier.com/books/cold-plasma-in-food-and-agriculture/misra/978-0-12-801365-6
Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Undefined, 77, 187–191. https://doi.org/10.1016/J.FOODCONT.2017.02.019
Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. https://doi.org/10.1088/1367-2630/11/11/115020
Fernández-Gutierrez, S. A., Pedrow, P. D., Pitts, M. J., & Powers, J. (2010). Cold Atmospheric-Pressure Plasmas Applied to Active Packaging of Apples. Undefined, 38(4 PART 4), 957–965. https://doi.org/10.1109/TPS.2010.2042078
Gallagher, M. J., & Fridman, A. (2011). Plasma Reforming for H2-Rich Synthesis Gas. Fuel Cells: Technologies for Fuel Processing, 223–259. https://doi.org/10.1016/B978-0-444-53563-4.10008-2
Ganesan, A. R., Tiwari, U., Ezhilarasi, P. N., & Rajauria, G. (2020). Application of cold plasma on food matrices: A review on current and future prospects. Undefined, 45(1). https://doi.org/10.1111/JFPP.15070
Gavahian, M., & Khaneghah, A. M. (2019). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Https://Doi.Org/10.1080/10408398.2019.1584600, 60(9), 1581–1592. https://doi.org/10.1080/10408398.2019.1584600
Groopman, J. D., Cain, L. G., Kensler, T. W., & Harris, C. C. (1988). Aflatoxin exposure in human populations: measurements and relationship to cancer. Critical Reviews in Toxicology, 19(2), 113–145. https://doi.org/10.3109/10408448809014902
Hayashi, N., Kawaguchi, R., & Liu, H. (n.d.). Treatment of Protein Using Oxygen Plasma Produced by RF Discharge.
Henniker Plasma Treatment - Henniker Plasma. (n.d.). Retrieved August 28, 2022, from https://plasmatreatment.co.uk/
Heo, N. S., Lee, M. K., Kim, G. W., Lee, S. J., Park, J. Y., & Park, T. J. (2014). Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments. Journal of Bioscience and Bioengineering, 117(1), 81–85. https://doi.org/10.1016/J.JBIOSC.2013.06.007
Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D., & Schlüter, O. (2015). Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Undefined, 55, 221–229. https://doi.org/10.1016/J.FOODCONT.2015.03.003
Hojnik, N., Cvelbar, U., Tavčar-Kalcher, G., Walsh, J. L., & Križaj, I. (2017). Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus “Classic” Decontamination. Toxins, 9(5). https://doi.org/10.3390/TOXINS9050151
Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2014). Potential Utility of High-Pressure Processing to Address the Risk of Food Allergen Concerns. Comprehensive Reviews in Food Science and Food Safety, 13(1), 78–90. https://doi.org/10.1111/1541-4337.12045
Isbary, G., Shimizu, T., Li, Y. F., Stolz, W., Thomas, H. M., Morfill, G. E., & Zimmermann, J. L. (2013). Cold atmospheric plasma devices for medical issues. Expert Review of Medical Devices, 10(3), 367–377. https://doi.org/10.1586/ERD.13.4
Jacobs, T., de Geyter, N., Morent, R., van Vlierberghe, S., Dubruel, P., & Leys, C. (2011). Plasma modification of PET foils with different crystallinity. Surface and Coatings Technology, 205(SUPPL. 2). https://doi.org/10.1016/J.SURFCOAT.2011.01.029
Jawale, R. H., & Gogate, P. R. (2018). Combined treatment approaches based on ultrasound for removal of triazophos from wastewater. Ultrasonics Sonochemistry, 40, 89–96. https://doi.org/10.1016/J.ULTSONCH.2017.02.019
Jeremy Hill, N., Gupta, D., Brunner, P., Gunduz, A., Adamo, M. A., Ritaccio, A., & Schalk, G. (2012). Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Journal of Visualized Experiments, 64. https://doi.org/10.3791/3993
Kim, S. H., Kim, J. H., & Kang, B. K. (2007). Decomposition reaction of organophosphorus nerve agents on solid surfaces with atmospheric radio frequency plasma generated gaseous species. Langmuir, 23(15), 8074–8078. https://doi.org/10.1021/LA700692T/SUPPL_FILE/LA700692T-FILE002.PDF
Klarhöfer, L., Viöl, W., & Maus-Friedrichs, W. (2010). Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung - International Journal of the Biology, Chemistry, Physics and Technology of Wood, 64(3), 331–336. https://doi.org/10.1515/HF.2010.048
Kudra, T., & Mujumdar, A. S. (2009). Advanced Drying Technologies. In Advanced Drying Technologies. CRC Press. https://doi.org/10.1201/9781420073898
Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Undefined, 46, 479–484. https://doi.org/10.1016/J.FM.2014.09.010
Langmuir, I. (1928). Oscillations in Ionized Gases. Proceedings of the National Academy of Sciences, 14(8), 627–637. https://doi.org/10.1073/pnas.14.8.627
Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022a). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748. https://doi.org/10.1016/J.JFOODENG.2021.110748
Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022b). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748. https://doi.org/10.1016/J.JFOODENG.2021.110748
Lebedev, Y. A. (2010). Microwave discharges: generation and diagnostics. Journal of Physics: Conference Series, 257(1), 012016. https://doi.org/10.1088/1742-6596/257/1/012016
Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T. (2018). Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice. Journal of Food Science, 83(2), 401–408. https://doi.org/10.1111/1750-3841.14045
López, M., Calvo, T., Prieto, M., Múgica-Vidal, R., Muro-Fraguas, I., Alba-Elías, F., & Alvarez-Ordóñez, A. (2019). A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/FMICB.2019.00622
Meinlschmidt, P., Ueberham, E., Lehmann, J., Schweiggert-Weisz, U., & Eisner, P. (2016). Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chemistry, 205, 229–238. https://doi.org/10.1016/J.FOODCHEM.2016.03.016
Menashi, W. P. (1964). Treatment of surfaces. 3, 163.
Misra, N. N. (2015). The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science & Technology, 45(2), 229–244. https://doi.org/10.1016/J.TIFS.2015.06.005
Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., & Cullen, P. J. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115–121. https://doi.org/10.1016/J.FOODHYD.2014.08.019
Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J. P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177–182. https://doi.org/10.1016/J.JBIOSC.2014.02.005
Misra, N. N., Schlüter, O., and Cullen, P. J. (Eds.) Cold plasma in food and agriculture: fundamentals and applications. Academic Press. 2016. 1-16. (n.d.). Retrieved August 26, 2022, from http://www.sciepub.com/reference/353597
Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3–4), 159–170. https://doi.org/10.1007/S12393-011-9041-9
Misra, N. N., Yadav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106–120. https://doi.org/10.1111/1541-4337.12398
Mousavi, S. M., Imani, S., Dorranian, D., Larijani, K., & Shojaee, M. (2017). Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. Journal of Plant Protection Research, 57(1), 25–35. https://doi.org/10.1515/JPPR-2017-0004
NGFA publishes updated resources on mycotoxins. (n.d.). Retrieved August 25, 2022, from https://www.ngfa.org/newsletter/ngfa-publishes-updated-resources-on-mycotoxins/
Niemira, B. A., & Gutsol, A. (2011). Nonthermal Plasma as a Novel Food Processing Technology. Nonthermal Processing Technologies for Food, 271–288. https://doi.org/10.1002/9780470958360.CH20
Nwabor, O. F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C., & Hart, A. (2022). A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. Food Engineering Reviews. https://doi.org/10.1007/S12393-022-09316-0
O’Connor, N., Cahill, O., Daniels, S., Galvin, S., & Humphreys, H. (2014). Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? The Journal of Hospital Infection, 88(2), 59–65. https://doi.org/10.1016/J.JHIN.2014.06.015
Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Undefined, 58, 150–159. https://doi.org/10.1016/J.FOODHYD.2016.02.022
Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O’Donnell, C. P., Bourke, P., Keener, K. M., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology., 35(1), 5–17. https://doi.org/10.1016/J.TIFS.2013.10.009
Pankaj, S. K., Shi, H., & Keener, K. M. (2018). A review of novel physical and chemical decontamination technologies for aflatoxin in food. Undefined, 71, 73–83. https://doi.org/10.1016/J.TIFS.2017.11.007
Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552–559. https://doi.org/10.1016/J.FOODCONT.2015.08.043
Patil, P. N., & Gogate, P. R. (2015). Combined Treatment Processes Based on Ultrasound and Photocatalysis for Treatment of Pesticide Containing Wastewater. Undefined, 1–29. https://doi.org/10.1007/978-981-287-470-2_61-1
(PDF) Cold Plasma Processing: A review. (n.d.). Retrieved August 24, 2022, from https://www.researchgate.net/publication/309290223_Cold_Plasma_Processing_A_review
Phan, K. T. K., Phan, H. T., Boonyawan, D., Intipunya, P., Brennan, C. S., Regenstein, J. M., & Phimolsiripol, Y. (2018a). Non-thermal plasma for elimination of pesticide residues in mango. Innovative Food Science & Emerging Technologies, 48, 164–171. https://doi.org/10.1016/J.IFSET.2018.06.009
Phan, K. T. K., Phan, H. T., Boonyawan, D., Intipunya, P., Brennan, C. S., Regenstein, J. M., & Phimolsiripol, Y. (2018b). Non-thermal plasma for elimination of pesticide residues in mango. Innovative Food Science & Emerging Technologies, 48, 164–171. https://doi.org/10.1016/J.IFSET.2018.06.009
Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio Frequency Heating of Foods: Principles, Applications and Related Properties—A Review. Undefined, 43(6), 587–606. https://doi.org/10.1080/10408690390251129
Plasma Jet. (n.d.). Retrieved September 12, 2022, from http://www.plasmaindia.com/Plasma_jet.htm
PlasmaLeap. (n.d.). Retrieved August 28, 2022, from https://www.plasmaleap.com/
Plattner, J., Kazner, C., Naidu, G., Wintgens, T., & Vigneswaran, S. (2017). Removal of selected pesticides from groundwater by membrane distillation. Environmental Science and Pollution Research 2017 25:21, 25(21), 20336–20347. https://doi.org/10.1007/S11356-017-8929-1
Preis, S., Klauson, D., & Gregor, A. (2013). Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. Journal of Environmental Management, 114, 125–138. https://doi.org/10.1016/J.JENVMAN.2012.10.042
Riedel Filtertechnik GmbH — Riedel Filtertechnik. (n.d.). Retrieved August 28, 2022, from https://www.riedel-filtertechnik.com/de/
Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/MNFR.201200735
Ružbarský, J., & Panda, A. (2017). Plasma jet. SpringerBriefs in Applied Sciences and Technology, 9783319462721, 1–12. https://doi.org/10.1007/978-3-319-46273-8_1/COVER
Saini, R., Kumar Mondal, M., & Kumar, P. (2017). Fenton oxidation of pesticide methyl parathion in aqueous solution: kinetic study of the degradation. Undefined, 36(2), 420–427. https://doi.org/10.1002/EP.12473
Scally, L., Behan, S., Aguiar de Carvalho, A. M., Sarangapani, C., Tiwari, B., Malone, R., Byrne, H. J., Curtin, J., & Cullen, P. J. (2021). Diagnostics of a large volume pin-to-plate atmospheric plasma source for the study of plasma species interactions with cancer cell cultures. Plasma Processes and Polymers, 18(6), 2000250. https://doi.org/10.1002/PPAP.202000250
Sharma, A. K., Josephson, G. B., Camaioni, D. M., Goheen, S. C., Sharma, A. K., Josephson, G. B., Camaioni, D. M., & Goheen, S. C. (2000a). Destruction of Pentachlorophenol Using Glow Discharge Plasma Process. EnST, 34(11), 2267–2272. https://doi.org/10.1021/ES981001I
Sharma, A. K., Josephson, G. B., Camaioni, D. M., Goheen, S. C., Sharma, A. K., Josephson, G. B., Camaioni, D. M., & Goheen, S. C. (2000b). Destruction of Pentachlorophenol Using Glow Discharge Plasma Process. EnST, 34(11), 2267–2272. https://doi.org/10.1021/ES981001I
Shriver, S. K., & Yang, W. W. (2011). Thermal and Nonthermal Methods for Food Allergen Control. Food Engineering Reviews 2011 3:1, 3(1), 26–43. https://doi.org/10.1007/S12393-011-9033-9
Sicherer, S. H., & Sampson, H. A. (2006). 9. Food allergy. Journal of Allergy and Clinical Immunology, 117(2), S470–S475. https://doi.org/10.1016/J.JACI.2005.05.048
Stratakos, A. C., & Koidis, A. (2015). Suitability, efficiency and microbiological safety of novel physical technologies for the processing of ready-to-eat meals, meats and pumpable products. International Journal of Food Science & Technology, 50(6), 1283–1302. https://doi.org/10.1111/IJFS.12781
Subedi, D. P., Joshi, U. M., & Wong, C. S. (2017). Dielectric barrier discharge (DBD) plasmas and their applications. Plasma Science and Technology for Emerging Economies: An AAAPT Experience, 693–737. https://doi.org/10.1007/978-981-10-4217-1_13/COVER
Surowsky, B., Fischer, A., Schlueter, O., & Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies, 19, 146–152. https://doi.org/10.1016/J.IFSET.2013.04.002
Takahashi, K., Nakano, Y., & Ando, A. (2017). Frequency-tuning radiofrequency plasma source operated in inductively-coupled mode under a low magnetic field. Journal of Physics D: Applied Physics, 50(26), 265201. https://doi.org/10.1088/1361-6463/AA7524
Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Undefined, 21, 114–122. https://doi.org/10.1016/J.IFSET.2013.09.012
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225–233. https://doi.org/10.1016/J.IFSET.2015.12.022
ten Bosch, L., Pfohl, K., Avramidis, G., Wieneke, S., Viöl, W., & Karlovsky, P. (2017). Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins, 9(3). https://doi.org/10.3390/TOXINS9030097
Tolouie, H., Mohammadifar, M. A., Ghomi, H., & Hashemi, M. (2018). Cold atmospheric plasma manipulation of proteins in food systems. Undefined, 58(15), 2583–2597. https://doi.org/10.1080/10408398.2017.1335689
Tsao, R., & Eto, M. (2018). Effect of Some Natural Photosensitizers on Photolysis of Some Pesticides. Aquatic and Surface Photochemistry, 163–172. https://doi.org/10.1201/9781351069847-12
Varilla, C., Marcone, M., & Annor, G. A. (2020a). Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10), 1435. https://doi.org/10.3390/FOODS9101435
Varilla, C., Marcone, M., & Annor, G. A. (2020b). Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020, Vol. 9, Page 1435, 9(10), 1435. https://doi.org/10.3390/FOODS9101435
Wang, J., Zhuang, H., Hinton, A., & Zhang, J. (2016a). Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiology, 60, 142–146. https://doi.org/10.1016/J.FM.2016.07.007
Wang, J., Zhuang, H., Hinton, A., & Zhang, J. (2016b). Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiology, 60, 142–146. https://doi.org/10.1016/J.FM.2016.07.007
Wang, S. Q., Huang, G. Q., Li, Y. P., Xiao, J. X., Zhang, Y., & Jiang, W. L. (2015). Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. European Food Research and Technology 2015 241:1, 241(1), 103–113. https://doi.org/10.1007/S00217-015-2439-5
Wu, Y., Liang, Y., Wei, K., Li, W., Yao, M., & Zhang, J. (2014). Rapid allergen inactivation using atmospheric pressure cold plasma. Environmental Science and Technology, 48(5), 2901–2909. https://doi.org/10.1021/ES5003988/SUPPL_FILE/ES5003988_SI_001.PDF
Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent Packaging: Concepts and Applications. Journal of Food Science, 70(1), R1–R10. https://doi.org/10.1111/J.1365-2621.2005.TB09052.X
Zhao, Y., Xia, Y., Xi, T., Zhu, D., Zhang, Q., Qi, Z., Liu, D., & Wang, W. (2020). Control of pathogenic bacteria on the surface of rolling fruits by an atmospheric pressure air dielectric barrier discharge system. Journal of Physics D: Applied Physics, 53(16), 164005. https://doi.org/10.1088/1361-6463/AB6E9B
Zhou, R., Zhou, R., Yu, F., Xi, D., Wang, P., Li, J., Wang, X., Zhang, X., Bazaka, K., & Ostrikov, K. (Ken). (2018). Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal, 342, 401–409. https://doi.org/10.1016/J.CEJ.2018.02.107
Zhu, W. C., Wang, B. R., Xi, H. L., & Pu, Y. K. (2010). Decontamination of VX Surrogate Malathion by Atmospheric Pressure Radio-frequency Plasma Jet. Plasma Chemistry and Plasma Processing 2010 30:3, 30(3), 381–389. https://doi.org/10.1007/S11090-010-9221-Z
Ziuzina, D., Misra, N. N., Cullen, P. J., Keener, K., Mosnier, J. P., Vilaró, I., Gaston, E., & Bourke, P. (2016). Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Medicine, 6(3–4), 397–412. https://doi.org/10.1615/PLASMAMED.2017019498
Ziuzina, D., Misra, N. N., Han, L., Cullen, P. J., Moiseev, T., Mosnier, J. P., Keener, K., Gaston, E., Vilaró, I., & Bourke, P. (2020). Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science & Emerging Technologies, 59, 102229. https://doi.org/10.1016/J.IFSET.2019.102229
Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109–116. https://doi.org/10.1016/J.FM.2014.02.007.